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The Solar System
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The case of GJ1214b
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The case of 55 Cancri-e
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The Kepler 11 system

Lissauer et al 2011, Nature,doi:10.1038/nature09760
6



Gas Midgets:Bern Lectures 2014

Our Planets so far
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All planets with R < 4Re, incl. Lithwick 2012 transit pairs
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Model 1: Rocky (Silicate) core with H2/He envelope
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A connection to the extended habitable zone

• If even these hot Super-Earths can retain an H2 envelope

• ... then further out, it should be even easier to retain a massive enve-
lope

• But in sufficient quantities H2 is a good greenhouse gas

• ... and it doesn’t condense as easily as CO2
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Small, rocky Jupiters?
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Top-of-Atmosphere Energy Balance for a Hydrogen World
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H2-assisted greenhouse on Early Earth?
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H2-assisted greenhouse on Early Earth?
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Even Early Mars may be able to retain H2

in climatically significant quantities
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Extended HZ Habitable only if uninhabited?
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Model 2: Rocky (Silicate) core with H2O envelope
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What kind of thing is GJ1214b?

• Transit depth vs wavelength→

– no H2 envelope (Bean, et al.)

– unless masked by high, optically thick clouds

• Water-world has been a leading candidate
But Kreidberg et al. Nature 2013 rule out
cloud free pure water vapor atmosphere.

• High temperature→

– supercritical fluid, no liquid ocean interface,

– probably no high-pressure ice mantle
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Kreidberg et al 2013 rule out pure-CO2 cloud-free atmosphere...
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... but not by much
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Photo-evaporation and hydrogen stripping

• Work in collaboration with Jamie Lloyd, Cornell (incl. ”Super Venus”
concept)

• For M-stars, close-in planets like GJ1214b are subject to H-stripping
due to EUV and XUV in pre Main-Sequence and young Main-
Sequence stage

• It doesn’t matter much what molecule is the H carrier, since there are
enough Ly-α photons to photolyze the whole atmosphere

• At present, GJ1214 doesn’t emit detectable Ly-α, so probably not
much photchemistry/escape going on currently, and no opportunity to
detect escape using Ly-α transits observations
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G star photon flux absorbed by H2O

108

1010

1012

1014

1016

0 50 100 150 200 250

Flux Density
Abs. flux Blackbody
Abs. flux, Obs. Sun

A
bs

or
be

d 
Fl

ux
, p

ho
to

ns
/m

2 /s

wavelength (nm)

EUV FUV

Ly-α

0.1

1

10

100

1000

104

105

0 50 100 150 200 250

Cumulative Flux

Cum. Flux, Blackbody
Cum. Flux, Obs. Sun

B
ar

s H
2O

 p
er

 b
ill

io
n 

ye
ar

s

wavelength (nm)

22



Gas Midgets:Bern Lectures 2014

For M stars, H2O photolysis dominated by Ly-α
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For M stars, high ”radiation dose” in long pre main-sequence
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Model 3: Rocky (Silicate) core with H-depleted fluid envelope
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GJ1214b as a CO2 world (a Super-Duper Venus!)
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The CO2 phase diagram (Boates, PNAS 2012)

GJ1214b too hot to have a CO2 ice mantle, but cooler planets might.
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Mass-radius relation for CO2 worlds
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CO2 worlds appear too dense for GJ1214b, but...

• There is a lot of guesswork in the EOS, and state of development of
theory for fluid EOS seems primitive.

• Latest molecular dynamic results (Swift, ApJ)
indicate H2O is also too dense
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Hot planets and M-star planets can have low density
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Model 4: Carbon worlds
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What kind of thing is 55 Cancri e ?

• This star puts out Lyman -α

• H escape would give extended atmosphere, deep Lyman-α transit

• ... but this is not seen, so H2 envelope unlikely

• H2O envelope also unlikely,
because photolysis would lead to H escape

• Alternate composition: (mostly) Solid carbon-rich planet

• Liquid carbon ocean at substellar point,
carbon vapor atmosphere (escaping?)

• But it could have a hydrogen-poor volatile envelope (e.g. CO2)
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Model 5: Spherical hollow space habitat

e.g. the Death Star
34



Gas Midgets:Bern Lectures 2014

Low-density Super-Earths raise interesting questions about ...

• Delivery of volatiles

• Planetary formation and migration

• Retention of atmospheres (esp. for hot cases)

• Thermal and compositional structure

• Relation of escape flux (potentially observable) to composition of the
planet
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Conclusions

• There are many Super-Earths with a volatile envelope (H2, CO2,
H2O, maybe others) making up a substantial fraction of the total mass
of the planet.

• The hot low-density M-star worlds are our best evidence that M-star
planets can retain volatiles. (Presently, our only evidence).

• For an M dwarf, H2O photolysis likely dominated by Lyman-α, and
typical fluxes can provide enough H to sustain energy limited escape.

• But we need more actual UV (esp E/XUV and FUV ) observations of
M dwarfs. validity of scaling laws vs. absolute bolometric luminosity?

• Hot close-orbit M-star planets were likely stripped of H during pre
main-sequence and early main-sequence stage. But how to explain
very low density objects? Did we just get lucky enough to see photo-
evaporating Jupiters before they are all gone?

• Spectral confirmation of carbon rich (CO2 worlds) vs worlds retaining
H2 envelopes is important.
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• We need better CO2 equation of state data out to 1000 GPa, at tem-
peratures of 10000K and lower. Molecular dynamics simulations can
do it, but evidently haven’t been done in this range. Also possibili-
ties for diamond anvil experiments. Shock wave experiments require
extrapolation to temperatures far below the Hugoniot.


