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The case of GJd1214b

p = 1900kg/m3

Detected by transit, with RV foIIowL-lup.
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The case of 55 Cancri-e

55B

p = 5900kg/m?3 Transiting multi-planet system
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The Kepler 11 system
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Our Planets so far
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All planets with R < 4R,, incl. Lithwick 2012 transit pairs
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Model 1: Rocky (Silicate) core with H, /He envelope

H,  envelope
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A connection to the extended habitable zone

If even these hot Super-Earths can retain an H» envelope

... then further out, it should be even easier to retain a massive enve-

lope
But in sufficient quantities H» is a good greenhouse gas

... and it doesn’t condense as easily as CO»

10
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Small, rocky Jupiters?

Jupiter
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Top-of-Atmosphere Energy Balance for a Hydrogen World
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H->-assisted greenhouse on Early Earth?

Science 4 January 2013:
Vol. 339 no. 6115 pp. 64-67
DOI: 10.1126/science.1225759

< Prev | Table of Contents | Next >

REPORT

Hydrogen-Nitrogen Greenhouse Warming in Earth's Early Atmosphere

Robin Wordsworth-, Raymond Pierrehumbert

Department of Geological Sciences, University of Chicago, Chicago, IL 60637, USA.
+«"To whom correspondence should be addressed. E-mail: rwordsworth{atjuchicago.edu

ABSTRACT

Understanding how Earth has sustained surface liquid water throughout its history remains a key
challenge, given that the Sun’s luminosity was much lower in the past. Here we show that with an

13
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H,-assisted greenhouse on Early Earth?
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Even Early Mars may be able to retain H-
in climatically significant quantities

A CO,-H; Greenhouse for Early Mars

IRTIRY

, Ravi Kopparapu"", Michael E. Zugger™", Tyler D. Robinson™",
Richard Freedman", and James F. Kasting"""

Ramses M. Ramirez
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'Department of Geosciences, "Applied Research Laboratory, " Penn State Astrobiology

~ Research Center, Penn State University University Park, PA 16802

" Astronomy Department. University of Washington, Box 351580, Seattle, WA 98195

" NASA Astrobiology Institute Virtual Planetary Laboratory

"' SETI Institute, Mountain View, CA 94043/NASA Ames Research Center, Moffett Field, CA,
94035
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Extended HZ Habitable only if uninhabited?
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Model 2: Rocky (Silicate) core with H>,O envelope

17
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What kind of thing is GJ1214b?

Transit depth vs wavelength —
— no H» envelope (Bean, et al.)
— unless masked by high, optically thick clouds

Water-world has been a leading candidate
But Kreidberg et al. Nature 2013 rule out
cloud free pure water vapor atmosphere.

High temperature —
— supercritical fluid, no liquid ocean interface,

— probably no high-pressure ice mantle

18
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Kreidberg et al 2013 rule out pure-CO» cloud-free atmosphere...
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Relative transit depth (parts per million) gr

... but not by much
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Photo-evaporation and hydrogen stripping
Work in collaboration with Jamie Lloyd, Cornell (incl. "Super Venus”
concept)

For M-stars, close-in planets like GJ1214b are subject to H-stripping
due to EUV and XUV in pre Main-Sequence and young Main-
Sequence stage

It doesn’t matter much what molecule is the H carrier, since there are
enough Ly-a photons to photolyze the whole atmosphere

At present, GJ1214 doesn’'t emit detectable Ly-«, so probably not
much photchemistry/escape going on currently, and no opportunity to
detect escape using Ly-« transits observations

21



Gas Midgets:Bern Lectures 2014

G star photon flux absorbed by H>O
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Lyman-a. photolysis (bars/Gyr)
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For M stars, H>,O photolysis dominated by Ly-«
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For M stars, high “radiation dose” in long pre main-sequence
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Model 3: Rocky (Silicate) core with H-depleted fluid envelope

25
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GJ1214b as a CO» world (a Super-Duper Venus!)

1 bar - - = = 500K
100 bar - - = = 1450K
(Venus Surface)
1000 bar - - = = 2450K
(.1 GPa)

To 1000 GPa
26
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The CO», phase diagram (Boates, PNAS 2012)
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GJ1214b too hot to have a CO» ice mantle, but cooler planets might.
27
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Mass-radius relation for CO, worlds
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CO» worlds appear too dense for GJ1214b, but...

e There is a lot of guesswork in the EOS, and state of development of
theory for fluid EOS seems primitive.

e Latest molecular dynamic results (Swift, ApJ)
iIndicate H>O is also too dense

29
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Hot planets and M-star planets can have low density
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Model 4: Carbon worlds

Amorphous
C or Graphite

Diamond
Core
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What kind of thing is 55 Cancrie ?

This star puts out Lyman -«
H escape would give extended atmosphere, deep Lyman-« transit
... but this is not seen, so H» envelope unlikely

H>O envelope also unlikely,
because photolysis would lead to H escape

Alternate composition: (mostly) Solid carbon-rich planet

Liquid carbon ocean at substellar point,
carbon vapor atmosphere (escaping?)

But it could have a hydrogen-poor volatile envelope (e.g. CO»)

32
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Amorphous
C or Graphite

Diamond
Core
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Model 5: Spherical hollow space habitat

e.g. the Death gtar
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Low-density Super-Earths raise interesting questions about ...

Delivery of volatiles

Planetary formation and migration

Retention of atmospheres (esp. for hot cases)
Thermal and compositional structure

Relation of escape flux (potentially observable) to composition of the
planet

35
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Conclusions

There are many Super-Earths with a volatile envelope (H,, CO»,
H>O, maybe others) making up a substantial fraction of the total mass
of the planet.

The hot low-density M-star worlds are our best evidence that M-star
planets can retain volatiles. (Presently, our only evidence).

For an M dwarf, H>O photolysis likely dominated by Lyman-«, and
typical fluxes can provide enough H to sustain energy limited escape.

But we need more actual UV (esp E/XUV and FUV ) observations of
M dwarfs. validity of scaling laws vs. absolute bolometric luminosity?

Hot close-orbit M-star planets were likely stripped of H during pre
main-sequence and early main-sequence stage. But how to explain
very low density objects? Did we just get lucky enough to see photo-
evaporating Jupiters before they are all gone?

Spectral confirmation of carbon rich (CO» worlds) vs worlds retaining

H- envelopes is important.
36



e We need better CO» equation of state data out to 1000 GPa, at tem-
peratures of 10000K and lower. Molecular dynamics simulations can
do it, but evidently haven't been done in this range. Also possibili-
ties for diamond anvil experiments. Shock wave experiments require
extrapolation to temperatures far below the Hugoniot.



