Photolysis and photoevaporation

Raymond T. Pierrehumbert The University of Chicago

Photoevaporation is ...

Escape of atmospheric constituents from the planet's gravity well...

- ... due to absorption of radiant energy (light) from the planet's star
- (hence *photo-*)
- Escaping mass carries away energy, somewhat like evaporation from a liquid
- (but no phase change involved).

Photolysis is ...

Breakup of heavy molecules into lighter components, due to energy provided by absorption of photons.

Lighter particles escape more easily. $\frac{3}{3}$

Atmospheric Escape provides upper boundary for evolution of atmospheric and even planetary chemical composition

Why we should care about photoevaporation

- What could be in atmospheres of hot-close orbit planets, e.g 55 Cancri-e?
- Can M-dwarf habitable zone planets retain an atmosphere?
- Nature of low-density Super-Earths like GJ1214b (cf. Lecture 3)
- Risk of early N₂ loss from M-dwarf habitable zone planets Hard to regenerate an N₂ atmosphere by outgassing ... but N₂ necessary for life as we know it. ... and also shields a planet from water loss. (Wordsworth and Pierrehumbert *ApJ* 2013)

Why we should care about hydrogen escape in particular

- H escape rate determines concentration of H₂ that can build up in an atmosphere, with implications for:
 - Extended H₂ habitable zone
 (Pierrehumbert and Gaidos, *ApJL*)
 - Early Earth H₂ N₂ greenhouse (Wordsworth and Pierrehumbert, *Science*)
 - Pre-biotic synthesis
- Lifetime of Hot Jupiters, density distribution of planets.
- Drives evolution of oxidation state of the planet, and even its rocky interior.
- Key role in permanent water loss during a runaway greenhouse
- Planet detection: Atmospheres in blowoff state are very extended, and may be detectable in extrasolar systems via Lyman- α .

It's all about energy

Need to reach escape energy $m \cdot g \cdot r$; many ways to do it.

Random Motion (thermal or nonthermal)

Organized Flow

A simple energy-limited escape calculation

- Potential energy of Earth's atmosphere per square meter of surface = $Mga = p_sa$
- Energy supplied by solar flux $S \approx 200 W/m^2$
- Enough energy to lose atmosphere in time $t = p_s a/S$
- Only 100 years!

Why doesn't this happen?

It's all about the photons: where they go, what they do

AD Leo (M-star) vs Sun (G-star)

- EUV and X-Ray is coronal, and greatly exceeds emission expected from a blackbody at the photospheric temperature
- Young stars have more of it, as do rapidly rotating stars (e.g. M-dwarfs)

X-ray luminosity declines with age of star

From Selsis et al

Energy balance of an escaping atmosphere

Diffusion only reduces escape if it increases radiative loss

Two limiting cases:

- EUV heating balanced mostly by IR radiative cooling, adiabatic expansion, and heat diffusion to colder lower atmosphere → weak wind w, hydrostatic balance.
- EUV heating balanced largely by vertical flux of kinetic energy $\rightarrow w$ large, nonhydrostatic

Hydrodynamic escape: Some history

- Parker Theory of the solar wind
- Watson, Donahue and Walker, 1981 Steady solutions with *EUV* heating
- Kasting and Pollack 1983 Comprehensive atmospheric chemistry but were not able to satisfy a consistent boundary condition at infinity
- Tian *et al* 2005. Transient simulations with cool homopause. Major downward revision in previous estimates of hydrogen loss rates
- Kutamoto et al. *EPSL 2013* Tian's numerics wrong?
- H escape for exoplanets, esp. Hot Jupiters, Super Earths Helmut Lammer, Ruth Murray-Clay, others.

An elementary point...

An adiabatic, hydrostatic atmosphere has finite depth

$$\theta \equiv T \cdot \left(\frac{p}{p_o}\right)^{-R/c_p}$$

$$\frac{dp}{dz} = -g \frac{p_o}{R\theta} (\frac{p}{p_o})^{1-R/c_p}$$

$$(\frac{p}{p_o})^{R/c_p} = 1 - \frac{g}{R\theta}(z - z_o)$$

For hydrodynamic escape,

w has to get large enough to defeat hydrostatic balance

Start with the momentum equation and mass continuity

$$\rho w \frac{dw}{dr} = -\frac{dp}{dr} - \rho g_s \frac{r_s^2}{r^2}$$

$$\Phi \equiv (\rho w A(r))/A(r_s) = \rho w (r/r_s)^2 = const$$

The boundary condition at infinity

- Subsonic flow has finite pressure, density at infinity
- Therefore, to "patch to empty space," flow must be supersonic at infinity
- Problem is hyperbolic at infinity; details of flow downstream don't affect upstream
- *but* must patch to sluggish subsonic flow at low altitudes
- Therefore, must cross the sonic point (Mach 1) at some position

The Transonic condition: Rewrite pressure gradient...

$$\frac{1}{\rho}\frac{dp}{dr} = c^2 \frac{d\ln(\theta)}{dr} - c^2 \frac{d\ln(\rho)}{dr}$$

 $c^2 \equiv \gamma RT$, the *adiabatic* sound speed.

...Eliminate ρ using mass continuity, sub in momentum eqn, eh voila:

$$(1 - \frac{c^2}{w^2})w\frac{dw}{dr} = c^2 \frac{d\ln(A/\theta)}{dr} - g_s \frac{r_s^2}{r^2}$$

The Transonic Rule

If w(r) is to be smooth near a point r_c where w = c, then

$$c^2 \frac{d \ln(A/\theta)}{dr} = g_s \frac{r_s^2}{r^2}$$

In adiabatic case without gravity, reduces to the requirement that A(r) have a minimum at r_c .

Define Mach number: $M \equiv \frac{w}{c}$

This ain't rocket science

Well, actually...

First, we're launching an atmosphere to escape velocity by burning EUV "fuel" , and ...

... then there's the De Laval Nozzle

Conservation is more than just a personal virtue...

First law: $c_p dT - \rho^{-1} dp = \delta Q$

Momentum equation integrates to:

$$E = \frac{1}{2}w^2 + c_pT - \frac{1}{2}2g_sr_s\frac{r_s}{r} = const. + \mathfrak{H}(r)$$

Calculation of the base temperature and density (adiabatic case)

- Transonic rule implies $c^2 = \gamma RT = \frac{1}{2}g_s \frac{r_s^2}{r_c^2} r_c$ at r_c
- Density at critical point is a free parameter. w = c there so we know escape flux
- Assume w small at base of escaping flow, and apply energy conservation

$$c_p T_b = g_s r_s \frac{r_s}{r_b} + \frac{5 - 3\gamma}{4(\gamma - 1)} g_s r_s \frac{r_s}{r_c}$$

Gives values on order of $g_s r_s/c_p$; very large unless g is small.

4400K for H_2 on Earth but only 244K for H_2 on Titan

(Molecular weight comes in through c_p ; 60,000K for N_2 on Earth)

Energy and the transonic rule

- Use adiabatic assumption to get $T(\rho)$, plus a lot of dull manipulations of thermodynamics
- Yields a function $E(M|r, \theta)$..
- $E(M|r,\theta)$ has a minimum at M = 1 for any fixed r, θ
- Transonic rule is equivalent to saying that the *value* of E at the minumum must have a turning point at the sonic point r_c .

What happens if transonic rule not satisfied?

Subsonic everywhere:Stay on left branch

What happens if transonic rule not satisfied?

Supersonic everywhere:Stay on right branch

But if you try to go transonic "against the law"?

dw/dr singular at sonic point, no continuation past

You run out of energy at the sonic point. This is a generalization of the finite depth of a hydrostatic, adiabatic atmosphere

But if instead you satisfy the transonic rule...

32

Now introduce *EUV* heating

Energy constraint and 'low temperature' limiting flux

- Use energy equation with heating term retained
- Assume c_pT and w^2 small compared to gravational potential at base
- Balance absorbed *EUV* flux against kinetic energy flux at infinity
- Defines a critical mass flux Φ_{crit}

$$\Phi_{crit} = \frac{1}{4} EUV_{\odot}/(g_s r_s)$$

What about molecular weight?

$$\Phi_{crit} = \frac{1}{4} EUV_{\odot}/(g_s r_s)$$

- Molecular weight does not appear in the critical flux
- Continuum hydrodynamics doesn't know about particles ...
- ... but c_p knows! (Think degrees of freedom per kg)

Scaling with heating, gravity and molecular weight

Characteristic temperature defined by: $c_p T^* = 2g_s r_s$

- Higher molecular weight or gravity \rightarrow higher T^*
- Nondimensionalized temperature profile $T(z)/T^*$ independent of c_p

Temperature vs distance for EUV-heated atmosphere (Earthlike, H_2 ,fixed $r_c/r_s = 30$)

Numbers on curves give nondimensional escape flux

Hydrodynamic escape makes puffy atmospheres which extend many planetary radii, and act as large "antennas" to catch more EUV

Very visible in Ly- α transits!

Summary of the general behavior

• If base temperature is cool

(compared to Parker Wind threshold temperature),

 $\Phi = \Phi_{crit}$, which represents escape of mass at rate that balances absorption of EUV energy.

- This has to be so, because there is no place for absorbed *EUV* energy to go except to escape as kinetic energy.
- Once r_c known we know wind, and from Φ we know density ρ_c there
- Base density $\rho_o \approx \rho_c \exp(a \cdot (T^*/T_o)(r_c/r_s 1)), a = O(1).$
- Adjust r_c until you match boundary condition on density at base. (Note solutions with $r_c/r_s \approx 1$ unphysical, since then velocity becomes large at the base, i.e. escape flow is not being accelerated from rest.)

Essential to consider non-hydrodynamic energy loss mechanisms

- It is not always possible to match the density and temperature boundary conditions at the base with a purely hydrodynamic energy balance.
- In particular, for high molecular weight gases it is hard to match a reasonable base density unless escape flux (and EUV heating) is very small.
- When the pure hydrodynamic balance is impossible, the atmosphere will heat up until radiative cooling and diffusive energy loss to lower atmosphere come into play ...
- ... and these mechanisms will steal energy from "energy limited" escape, and reduce escape flux below Φ_{crit}

Bleachworld: H escape from waterworlds

Photolysis: Where does it happen, and how fast?

Will use H_2O photolysis as example

Photolysis occurs in a very thin layer

Solar photon flux at Earth orbit

Bleachworld: H escape from waterworlds

G star photon flux absorbed by ${\rm H_2O}$

Bleachworld: H escape from waterworlds

Lets count photons!

46

Some take-home points

- There are plenty of photons available to dissociate atmospheric constituents...
- ... even for M-stars, where most chemistry is driven by Ly- α .
- Escape rate is the limiting factor for volatile loss (e.g. water).
- Mass will always escape hydrodynamically at the rate Φ_{crit} needed to balance EUV heating unless diffusive or radiative loss carries away part or all of the energy instead.
- i.e. you'll *always* get the "energy limited" escape rate unless you explicitly put in the other loss mechanisms.
- Recombination with accumulating oxygen could also restrict water (or CO₂) loss
- UV astronomy provides critical information for atmospheric evolution but we will have essentially no UV capability after Hubble goes.