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Photoevaporation is ...

Escape of atmospheric constituents from the planet’s gravity well...

• ... due to absorption of radiant energy (light) from the planet’s star

• (hence photo-)

• Escaping mass carries away energy, somewhat like evaporation from
a liquid

• (but no phase change involved).
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Photolysis is ...

Breakup of heavy molecules into lighter components, due to energy
provided by absorption of photons.
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Atmospheric Escape provides upper boundary for
evolution of atmospheric and even planetary chemical composition
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Why we should care about photoevaporation

• What could be in atmospheres of hot-close orbit planets,
e.g 55 Cancri-e?

• Can M-dwarf habitable zone planets retain an atmosphere?

• Nature of low-density Super-Earths like GJ1214b
(cf. Lecture 3)

• Risk of early N2 loss from M-dwarf habitable zone planets
Hard to regenerate an N2 atmosphere by outgassing

... but N2 necessary for life as we know it.

... and also shields a planet from water loss.
(Wordsworth and Pierrehumbert ApJ 2013)
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Why we should care about hydrogen escape in particular

• H escape rate determines concentration of H2 that can build up in an
atmosphere, with implications for:

– Extended H2 habitable zone
(Pierrehumbert and Gaidos, ApJL)

– Early Earth H2 −N2 greenhouse
(Wordsworth and Pierrehumbert, Science)

– Pre-biotic synthesis

• Lifetime of Hot Jupiters, density distribution of planets.

• Drives evolution of oxidation state of the planet,
and even its rocky interior.

• Key role in permanent water loss during a runaway greenhouse

• Planet detection: Atmospheres in blowoff state are very extended, and
may be detectable in extrasolar systems via Lyman-α.
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It’s all about energy

Need to reach escape energy m · g · r; many ways to do it.

Random Motion
(thermal or nonthermal)

Organized Flow
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A simple energy-limited escape calculation

• Potential energy of Earth’s atmosphere per square meter of surface
= Mga = psa

• Energy supplied by solar flux S ≈ 200W/m2

• Enough energy to lose atmosphere in time t = psa/S

• Only 100 years!

Why doesn’t this happen?
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It’s all about the photons: where they go, what they do
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AD Leo (M-star) vs Sun (G-star)
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• EUV and X-Ray is coronal, and greatly exceeds emission expected
from a blackbody at the photospheric temperature

• Young stars have more of it, as do rapidly rotating stars (e.g. M-dwarfs)
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X-ray luminosity declines with age of star

From Selsis et al
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Energy balance of an escaping atmosphere
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Diffusion only reduces escape if it increases radiative loss
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Two limiting cases:

• EUV heating balanced mostly by IR radiative cooling,
adiabatic expansion, and heat diffusion to colder lower atmosphere

→ weak wind w, hydrostatic balance.

• EUV heating balanced largely by vertical flux of kinetic energy
→ w large, nonhydrostatic

15



Bern Lectures 2014: Photoevaporation

Hydrodynamic escape: Some history

• Parker – Theory of the solar wind

• Watson, Donahue and Walker, 1981 –
Steady solutions with EUV heating

• Kasting and Pollack 1983 – Comprehensive atmospheric chemistry
but were not able to satisfy a consistent boundary condition at infinity

• Tian et al 2005. Transient simulations with cool homopause. Major
downward revision in previous estimates of hydrogen loss rates

• Kutamoto et al. EPSL 2013 – Tian’s numerics wrong?

• H escape for exoplanets, esp. Hot Jupiters, Super Earths
Helmut Lammer, Ruth Murray-Clay, others.
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An elementary point...

An adiabatic, hydrostatic atmosphere has finite depth

θ ≡ T · ( ppo)
−R/cp

dp
dz = −g poRθ( ppo)

1−R/cp

( ppo)
R/cp = 1− g

Rθ(z − zo)

For hydrodynamic escape,
w has to get large enough to defeat hydrostatic balance
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Start with the momentum equation and mass continuity

ρwdwdr = −dpdr − ρgs
r2
s
r2

Φ ≡ (ρwA(r))/A(rs) = ρw(r/rs)2 = const
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The boundary condition at infinity

• Subsonic flow has finite pressure, density at infinity

• Therefore, to ”patch to empty space,”
flow must be supersonic at infinity

• Problem is hyperbolic at infinity;
details of flow downstream don’t affect upstream

• but must patch to sluggish subsonic flow at low altitudes

• Therefore, must cross the sonic point (Mach 1) at some position
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The Transonic condition:Rewrite pressure gradient...

1
ρ
dp
dr = c2d ln(θ)

dr − c2d ln(ρ)
dr

c2 ≡ γRT , the adiabatic sound speed.
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...Eliminate ρ using mass continuity,
sub in momentum eqn, eh voila:

(1− c2

w2)wdwdr = c2
d ln(A/θ)

dr − gsr
2
s
r2
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The Transonic Rule

If w(r) is to be smooth near a point rc where w = c, then

c2
d ln(A/θ)

dr = gs
r2
s
r2

In adiabatic case without gravity, reduces to the requirement that A(r)

have a minimum at rc.

Define Mach number: M ≡ w
c
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ThIs ain’t rocket science
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Well, actually...

First, we’re launching an atmosphere to escape velocity by burning EUV
”fuel” , and ...
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... then there’s the De Laval Nozzle
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Conservation is more than just a personal virtue...

First law: cpdT − ρ−1dp = δQ

Momentum equation integrates to:

E = 1
2w

2 + cpT − 1
22gsrsrsr = const.+H(r)
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Calculation of the base temperature and density (adiabatic case)

• Transonic rule implies c2 = γRT = 1
2gs

r2
s
r2
c
rc at rc

• Density at critical point is a free parameter. w = c there so we know
escape flux

• Assume w small at base of escaping flow, and apply energy conser-
vation

cpTb = gsrs
rs
rb

+ 5−3γ
4(γ−1)gsrs

rs
rc

Gives values on order of gsrs/cp; very large unless g is small.

4400K for H2 on Earth but only 244K for H2 on Titan

(Molecular weight comes in through cp; 60,000K for N2 on Earth )
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Energy and the transonic rule

• Use adiabatic assumption to get T (ρ), plus a lot of dull manipulations
of thermodynamics

• Yields a function E(M |r, θ)..

• E(M |r, θ) has a minimum at M = 1 for any fixed r, θ

• Transonic rule is equivalent to saying that the value of E at the
minumum must have a turning point at the sonic point rc.
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What happens if transonic rule not satisfied?

Subsonic everywhere:Stay on left branch

-5.6 107

-5.5 107

-5.4 107

-5.3 107

-5.2 107

-5.1 107

-5 107

0.01 0.1 1 10

E
ne

rg
y

Mach Number

1.10

1.14

1.167

In
cr

ea
si

ng
 r

1.2

29



Bern Lectures 2014: Photoevaporation

What happens if transonic rule not satisfied?

Supersonic everywhere:Stay on right branch
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But if you try to go transonic ”against the law”?

dw/dr singular at sonic point, no continuation past
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You run out of energy at the sonic point. This is a generalization of the
finite depth of a hydrostatic, adiabatic atmosphere
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But if instead you satisfy the transonic rule...
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Now introduce EUV heating

Subsonic Supersonicrc

Apply transonic
condition here

Heating
Layer

Adiabatic

θ(r)

r

E(r)
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Energy constraint and ’low temperature’ limiting flux

• Use energy equation with heating term retained

• Assume cpT and w2 small compared to gravational potential at base

• Balance absorbed EUV flux against kinetic energy flux at infinity

• Defines a critical mass flux Φcrit

Φcrit = 1
4EUV�/(gsrs)
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What about molecular weight?

Φcrit = 1
4EUV�/(gsrs)

• Molecular weight does not appear in the critical flux

• Continuum hydrodynamics doesn’t know about particles ...

• ... but cp knows! (Think degrees of freedom per kg)
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Scaling with heating, gravity and molecular weight

Characteristic temperature defined by: cpT ∗ = 2gsrs

• Higher molecular weight or gravity→ higher T ∗

• Nondimensionalized temperature profile T (z)/T ∗ independent of cp

36



Bern Lectures 2014: Photoevaporation

Temperature vs distance for EUV-heated atmosphere
(Earthlike,H2,fixed rc/rs = 30)
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Hydrodynamic escape makes puffy atmospheres which extend
many planetary radii, and act as large ”antennas” to catch more EUV

Shallow Atmosphere

Puffy Atmosphere

Very visible in Ly-α transits!
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Summary of the general behavior

• If base temperature is cool
(compared to Parker Wind threshold temperature),

Φ = Φcrit, which represents escape of mass at rate that balances
absorption of EUV energy.

• This has to be so, because there is no place for absorbedEUV energy
to go except to escape as kinetic energy.

• Once rc known we know wind, and from Φ we know density ρc there

• Base density ρo ≈ ρc exp(a · (T ∗/To)(rc/rs − 1)), a = O(1).

• Adjust rc until you match boundary condition on density at base.
(Note solutions with rc/rs ≈ 1 unphysical, since then velocity be-
comes large at the base, i.e. escape flow is not being accelerated
from rest.)
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Essential to consider non-hydrodynamic energy loss mechanisms

• It is not always possible to match the density and temperature bound-
ary conditions at the base with a purely hydrodynamic energy balance.

• In particular, for high molecular weight gases it is hard to match a
reasonable base density unless escape flux (and EUV heating) is very
small.

• When the pure hydrodynamic balance is impossible, the atmosphere
will heat up until radiative cooling and diffusive energy loss to lower
atmosphere come into play ...

• ... and these mechanisms will steal energy from ”energy limited” es-
cape, and reduce escape flux below Φcrit
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Bleachworld: H escape from waterworlds

Photolysis: Where does it happen, and how fast?

Will use H2O photolysis as example
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Bleachworld: H escape from waterworlds

Photolysis occurs in a very thin layer
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Bleachworld: H escape from waterworlds

Solar photon flux at Earth orbit
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G star photon flux absorbed by H2O
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Lets count photons!
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For M stars, H2O photolysis dominated by Ly-α
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Photolysis, Chemistry and Escape:
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Some take-home points

• There are plenty of photons available to dissociate atmospheric con-
stituents...

• ... even for M-stars, where most chemistry is driven by Ly-α.

• Escape rate is the limiting factor for volatile loss (e.g. water).

• Mass will always escape hydrodynamically at the rate Φcrit needed to
balance EUV heating unless diffusive or radiative loss carries away
part or all of the energy instead.

• i.e. you’ll always get the ”energy limited” escape rate unless you ex-
plicitly put in the other loss mechanisms.

• Recombination with accumulating oxygen could also restrict water (or
CO2) loss

• UV astronomy provides critical information for atmospheric evolution
but we will have essentially no UV capability after Hubble goes.
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