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The H-R diagram
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What makes a star shine?

• Fusion of light elements into heavy elements

• Hydrogen is by far the most abundant fuel in the Universe

• Main sequence stars burn H into He

• 90% of stars are main sequence stars

• Stars do not evolve along the Main Sequence.
they enter the Main Sequence when they start fusing H,
and leave it when H fuel is exhausted
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The mass-luminosity relation

Luminosity: The power output of a star

For stars burning H to He,

L ∼

M4 ifM > .4M�
M2.3 ifM < .4M�

→ Low-mass stars are dimmer
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Relation between color, luminosity and mass

• For any radiating body, dominant wavelength is
inversely proportional to temperature

• Cooler = more red. Hotter = more blue

• Relevant temperature for star is ”surface” (photosphere) temperature,
where light escapes from
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Relation between color, luminosity and mass

L = 4πr2σT4, so T4 ∼ L/r(M)2

r(M) ∼Mα, (e.g. α = 1
3 if mean density were constant). Then:

T ∼

M
1−1

2α ifM > .4M�

M .575−1
2α ifM < .4M�

→ Low-mass stars smaller, cooler and redder
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How long does a main sequence star shine?
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He
4.3 x 10-12 joules

E = 6.4 x 1014 joules/(kg H)

Total conversion lifetime t∞ =M · E/L

100 billion years for Sun,
– vs 10 billion years actual main sequence lifetime for a Sunlike star
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To burn H, you have to mix it into the core

Radiative region

Fusion

Convective Photosphere

Helium “ash”
accumulates here
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From mass-luminosity relation, total conversion lifetime is:

t∞ = E·M
L =

t∞,�(
M
M�

)−3 ifM > .4M�

4.7t∞,�( MM�)
−1.3 ifM < .4M�

e.g. 2.2 trillion years for M = .3M� (like GJ581)

M stars are extremely long-lived, evolve slowly
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M stars in the Universe

Commonly estimated that 70% of stars
(76% of main-sequence stars) are M-dwarfs

But our ability to do a complete census of dim stars is limited,
even in our own galaxy.
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M stars in our neighborhood
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46 of the 71 stars in the 50 nearest systems are M stars
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Our closest neighbor is an M-star

400 Neptune orbits

α Centauri

Proxima Centauri

T = 3042 K
L = .0017L

sun

A
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Radial velocity surveys

e.g. HARPS (Chile)
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Transit method
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Ground based transit surveys

MEarth
WASP/Super-WASP
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Kepler: Space-based transit survey
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Do planets form around M-stars?
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Do planets form around M-stars?
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Red dwarfs are redder than the Sun...
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... but not so red as the name implies
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Consequences: Not as much blue to make the sky blue

Atmosphere reflects
much energy back to space

Atmosphere reflects
little energy back to space

All other things being equal, M-dwarf planets absorb more of the incident
stellar radiation
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But more of the stellar radiation is deposited high in the atmosphere,
less at the ground and in deep atmosphere
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Implies weaker convection, shallower troposphere

G star (Earthlike case) M-star planet

absorption here

T(z) T(z)

absorption here
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Consequences:Ice and snow are not as ”white” as on Earth
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Reduced reflectivity contrast between ice/snow and ocean
makes it harder for a planet to freeze over and turn into a Snowball

Shields, et al Astrobiology 2013, computed with 300ppm CO2
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But this doesn’t affect the outer edge of the habitable zone, because the
dense atmospheres needed to make a planet habitable there make the
planetary reflectivity nearly independent of the surface characteristics.
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For dim stars, habitable zone planets are in close orbits

L~ = L
R2 (L in units of Solar luminosity, R = orbital dist. in a.u.)

L~ = 1→ R = L
1
2 = .44M1.15 (M measured in Solar masses)

Orbital period (Earth years): P = R1.5/M .5 = .39M1.22

e.g for Gliese 581:
M = .3→ R = .11 a.u. P = .09 years = 33 Earth days

27



Exoclimes 2014, Davos

Strong tidal stresses slow the planets rotation
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Stress: M/r3 = 11.7M−2.45

(e.g. 1 for Earth, 17.25 for Mercury, 223 for the HZ of GJ581)

For circular orbit, end-state is tide-locked
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Tide-locked planets in circular orbits have
permanent dayside and nightside

Substellar point (local noon, where star is directly overhead)
is geographically fixed
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Slow rotation→ weak Coriolis force
→ weak temperature gradients in the atmosphere

i.e. atmosphere doesn’t condense out onto the nightside
30
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But there can be strong temperature gradients near the surface,
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... and even ice formation if the planet has an ocean
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But if the orbit is elliptical ...

• Variation in orbital angular speed with distance from star means that
exact tide-locked states are no longer possible.

• Quasi-synchronous states, where substellar point
rocks back and forth a bit

• Low-order spin-orbit resonances.
(e.g. 3 days per two years, as for Mercury
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So, neighborhood of M-dwarfs is great real estate,
but there’s a catch ...

M-star rotation and deep convection make strong magnetic fields,
promote flaring, activity

→ Strong extreme ultraviolet and X-ray emission
(relative to luminosity)
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Ultraviolet (UV) is important because ...

• Very shortwave ultraviolet (EUV) and X-rays are absorbed high up in
the atmosphere, and heat it to the point where the atmosphere can
escape to space.

• i.e. it’s the rocket fuel that brings molecules up to escape velocity and
can launch atmosphere out of the gravity well.

• Shorter wave ultraviolet drives photochemistry, and can break up
heavy molecules into lighter components that escape more easily.

• Low mass stars can take a half billion years to enter the main se-
quence, and UV/X-ray luminosity is further elevated throughout this
time.

• But as M stars age on the main sequence, they can quiet down
If planets can regenerate an atmosphere later, habitability could be
recovered. (but no easy way to regenerate a nitrogen atmosphere).

• More on all this in Lecture 2
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Summary

• There are likely to be many planets in the habitable zone of M stars

• With an atmosphere, they would have unusual seasonal/diurnal cy-
cles, shallower tropospheres with weak convection.

• Weak horizontal temperature gradients aloft, monsoonal circulations
with most of rainfall and warm waters under the substellar point

• ... but none of this is a threat to habitability

• The main question is whether any of these planets formed with, and
retained volatiles (atmosphere, ocean).

• But we know some are all atmosphere!
(cf. GJ1214b, more in Lecture 3)

• Essential next step is a catalog of which M star planets
have retained an atmosphere
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