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n

.,
Sy
1 3
|
. -
g |
.

The |l



Long-term stability of the solar system

The problem:

A point mass is surrounded by N > | much smaller masses on
nearly circular, nearly coplanar orbits. Is the configuration stable
over very long times (up to 10'° orbits)?




Newton (1642-1726):

“blind fate could never make all the planets move one
and the same way in orbs concentric, some
inconsiderable irregularities excepted, which could
have arisen from the mutual actions of planets upon
one another, and which will be apt to increase, until
this system wants a reformation”

SAACYS NEWTONVS.
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Pierre-Simon Laplace (1749-1827):

“an intelligence knowing, at a given instant of time,
all forces acting in nature, as well as the
momentary positions of all things of which the
universe consists, would be able to comprehend
the motlons of the largest bodles of the world and

- those of the smallest atoms in one single formula,
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Long-term stability of the solar system

The problem:

A point mass is surrounded by N > | much smaller masses on
nearly circular, nearly coplanar orbits. Is the configuration stable
over very long times (up to 10'° orbits)?

four choices:
Wh)’ is this interesting? |.in about 7 % 107 years, the Sun exhausts

its fuel and expands into a giant star,
heating the Earth to several thousand K
and perhaps swallowing it

2.the Earth or some other planet’s orbit is
unstable, and they collide

3.the Earth’s orbit is unstable and it falls

into the Sun
4.the Earth’s orbit is unstable, and it is
ejected into interstellar space



Long-term stability of the solar system

The problem:

A point mass is surrounded by N > | much smaller masses on
nearly circular, nearly coplanar orbits. Is the configuration stable
over very long times (up to 10'? orbits)?
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Long-term stability of the solar system

The problem:

A point mass is surrounded by N > | much smaller masses on
nearly circular, nearly coplanar orbits. Is the configuration stable
over very long times (up to 10'° orbits)?

Why is this interesting?

e 5 P SRR Y Wik oo oept
DR AT PR e B
popiss A R Gt

A o

i b’ ' PSS & b ¥ - 5 T
TR SN b S D b N e (0 (5 & e e S
.'-3'“‘ AL AL R e RS O Fagies %
B o (LT el RO




Long-term stability of the solar system

The problem:

A point mass is surrounded by N > | much smaller masses on
nearly circular, nearly coplanar orbits. Is the configuration stable
over very long times (up to 10'° orbits)?

How can we solve this?
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The problem:

A point mass is surrounded by N > | much smaller masses on
nearly circular, nearly coplanar orbits. Is the configuration stable
over very long times (up to 10'° orbits)?

How can we solve this?
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Long-term numerical integrations of
the solar system

why are these hard!?

* most improvements in speed in modern computers come through
massive parallelization, and this problem is difficult to parallelize

- for N planets only N(N-1)/2 operations can be done in parallel; if N=8
then N(N-1)/2=28

. . .
- parallel-in-time (e.g., parareal) algorithms have not been explored much
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Consider following a test particle in the force field of a point mass. Set
G=M=| for simplicity. Equations of motion read

r

P=v ; V=F()=——
-

Examine three integration methods with timestep h:

AN AT ) (AN VA B v 7 3 T ) |. Euler’s method

r,+hvy ; Vpy1 =V, + hF(rpe1) 2. modified Euler’s




eccentricity = 0.2

200 force evaluations
per orbit with each
method

plot shows fractional
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Motion of a test particle in a potential ®(r) is described by the Hamiltonian
H(r,v) = Hy(r,v)+ Hp(r,v)

where 1
HA = 5'1)2 s HB = <I>(r)

and the equations of motion
L) _oH
SO O

- To create an integrator with time step h, advance the particle for h under Hy

A e
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Motion of a test particle in a potential ®(r) is described by the Hamiltonian

A geometric integration algorithm is a numerical

e integration algorithm that preserves some geometric
property of the original set of differential equations
M (e.g., symplectic algorithms, time-reversible algorithms)

The motivation for geometric integration algorithms is
N that prese.rving the phase-space geometry of the flow
alo determined by the real dynamical system is more

important than minimizing the one-step error
I'n+l1 = TIn T T T i, {7 R g 'nt1

which is modified Euler.
Modified Euler is a symplectic or Hamiltonian map because at each step the
particle trajectory is determined by a Hamiltonian.



Motion of a test particle in a potential ®(r) is described by the Hamiltonian
H(I‘, V) = HA(I', V) + HB(r) V)

where ]
Hy = 5«)2 ; Hp = ®(r)

Motion of a test particle in a system of IV planets is described by the potential
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Long-term numerical integrations of
the solar system

why are these hard!?

* most improvements in speed in modern computers come through
massive parallelization, and this problem is difficult to parallelize

* sophisticated algorithms are needed to avoid numerical dissipation
* roundoff error:

- typically a few bits per timestep = fractional error of a few times 2->3
in standard double precision ~ a few times 10-'¢
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The equations of motion for the solar system

Newton’s law of gravity and Newton’s laws of motion
for 8 planets + the Sun:

d2XZ' my :
=GN (x; —x;) + small corrections
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The equations of motion for the solar system

otion

| corrections







50 Myr into the future

T

just before-the Sun dies
(7 Gyr in the future) .

AN

just after the solar system
was formed (4.5 Gyri in the

past) /, e

innermost four
planets
(Mercury,Venus,

Earth, Mars)

Ito & Tanikawa (2002)



Two kinds of dynamical system

Regular Chaotic

« highly predictable, “well- o difficult to predict,“erratic”
behaved” « small differences grow

« small differences grow exponentially at large times: Ax,

linearly: Ax, Av « t Av < exp(t/t,) where t, is
Liapunov time

. eg baseball golf S|mple
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The stability of the solar system

« all planetary orbits are chaotic, with Liapunov time t. ~ 5-20 Myr =

> 200 e-folds in the lifetime of the solar system (Sussman & Wisdom
1988, Laskar 1989, Sussman & Wisdom 1992, Hayes et al. 2010)




RS «—— saturated

'

—

o
Y

factor of 1,000

loge (separation)

- A — .

150 200 250 300
Time (10° years) T
3x [08yr

Sussman & Wisdom (1992) (7% of solar system age)
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- double-precision (p=53 bits) 2"d order mixed-variable symplectic method with h=4 days and
h=8 days

- double-precision (p=53 bits) 14 order multistep method with h=4 days

- extended-precision (p=80 bits) 27™ order Taylor series with h=220 days



The stability of the solar system

o all planetary orbits are chaotic, with Liapunov time t. ~ 5-20 Myr =
> 200 e-folds in the lifetime of the solar system (Sussman & Wisdom
1988, Laskar 1989, Sussman & Wisdom 1992, Hayes et al. 2010)

« most of the chaotic behavior is in the orbital phases of the planets,
not the overall shapes and sizes of the orbits

Ito & Tanikawa (2002)




The stability of the solar system

« all planetary orbits are chaotic, with Liapunov time t. ~ 5-20 Myr =
> 200 e-folds in the lifetime of the solar system (Sussman & Wisdom
1988, Laskar 1989, Sussman & Wisdom 1992, Hayes et al. 2010)

» most of the chaotic behavior is in the orbital phases of the planets,
not the overall shapes and sizes of the orbits
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The stability of the solar system

« all planetary orbits are chaotic, with Liapunov time t_. ~ 5-20 Myr =

> 200 e-folds in the lifetime of the solar system (Sussman & Wisdom
| 988, Laskar 1989, Sussman & Wisdom 1992, Hayes et al. 2010)

» most of the chaotic behavior is in the orbital phases of the planets,
not the overall shapes and sizes of the orbits
* howeve
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maximum eccentricity of Mercury over | Myr running window, for
2500 nearby initial conditions

2,000 3,000 4,000
Time (Myr

Laskar & Gastineau (2009)



The stability of the solar system

« all planetary orbits are chaotic, with Liapunov time t. ~ 5-20 Myr =
> 200 e-folds in the lifetime of the solar system (Sussman & Wisdom
1988, Laskar 1989, Sussman & Wisdom 1992, Hayes et al. 2010)

» most of the chaotic behavior is in the orbital phases of the planets,
not the overall shapes and sizes of the orbits

* however, the shape of Mercury’s orbit changes randomly
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The stability of the solar system

« all planetary orbits are chaotic, with Liapunov time t. ~ 5-20 Myr =
> 200 e-folds in the lifetime of the solar system (Sussman & Wisdom
1988, Laskar 1989, Sussman & Wisdom 1992, Hayes et al. 2010)

» most of the chaotic behavior is in the orbital phases of the planets,
not the overall shapes and sizes of the orbits

. however the shape of Mercurys orblt changes randomly
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* orbits of planets in the solar system are chaotic

* probably chaotic evolution of orbits has led to collisions and
ejections of planets in the past

* can aspects of this process be described analytically i.e., without
integrating orbits!?

There are many bad examples of attempts to explain the properties
of planetary orbits from first principles, e.g.,

- Kepler’s zeroth law
- Titius-Bode law

Nevertheless there are reasons to try again:
- N-body integrations allow approximate analytic models to be tested

- Kepler has provided a large statistical sample of multi-planet systems



Planetary systems discovered by Kepler
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The range of strong interactions from a planet of mass m orbiting a star of mass M
in a circular orbit of radius a is the Hill radius

"H=%\3p)

Numerical integrations show that planets of mass m, m” with semi-major axes a, a’,
a < a’ are stable for N orbital periods if closest approach exceeds k Hill radii, or

a'(1—¢€)—a(l+e)>k(N)ryg

pericenter of apocenter of
outer planet inner planet

typically k(10'%) =~ || +2

Pu & Wu (2014)




The sheared sheet

Problem: statistical mechanics works best on homogeneous systems with N >> |,
whereas planetary systems have large-scale radial gradients and N < |10

Equation of motion for a planet is

” GM,
R+ 3" R=-Vo

where @ is the gravitational potential from the other planets.
Transform to frame rotating with angular speed Q = (GM, /R3)'/? appro-
priate for a circular orbit at radius Rj:

G M,
R3

R+ R-—OR+2QxR=-Vd

Write R = Rg + #f + y¢ and expand to O(z,y/Ro):

P )
:‘1&—2&23}—39%:—6—, y+29¢=—a—.
ox oy

These are invariant under z -z + A, y — y + %QAt so we can apply periodic
shearing boundary conditions.
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Equation of motion for a plar

where @ is the gravitational p
Transform to frame rotati
priate for a circular orbit at r

GM,

R + 73

Write R = Ry + 2 + y¢ and expand to O(z, y/Ryo):

i —2Qy — 30%z = —g—@, i+ 2Qz = —a—q).
€I

These are invariant under x - x + A, y — y + %QAt so we can apply periodic
shearing boundary conditions.
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The sheared sheet

Problem: statistical mechanics works best on homogeneous systems with N >> |,
whereas planetary systems have large-scale radial gradients and N < 10

Equation of motion for a planet is
G M,
R3
sy Ansatz: planetary systems fill uniformly the region of

Tt‘f phase space allowed by stability (~ ergodic model)
priate

R + R=-Vo&

GM,

p —
5 R—’R+20xR=-Vo

R +

Write R = Rg + 2t + y¢ and expand to O(z,y/Ro):

P d
&&-29@-39%:-‘9—, y+2m~=—a—.
1) oy

These are invariant under z -z + A, y — y + %QAt so we can apply periodic
shearing boundary conditions.



|. Use the sheared sheet approximation

2. Assume systems fill the region of phase space allowed by stability (ergodic

model)

Leads to an N-planet distribution function

/

N

phase-space volume

apocenter and pericenter must
be separated by k Hill radii

/

~—
p(ai,e1,...,an,en) X Hdaidef Hla;11(1 —ejp1) — a;(1+ €;) — krg]

=1

\

step function

where H (-) is the step function, k = 1142, and rg = a(m;+m;1)Y/3/(3M,)1/3.

For comparison the distribution function for a one-dimensional gas of hard rods of

length L (Tonks 1936) is

N
p(a,...,an) Hdai H(aj4+1 —a; — L)
il




N-planet distribution function

N
plai,e1,...,an,en) X Hdaide? Hla;+1(1 —ejy1) —a;(1+ ;) — krg]|

=1

where H (-) is the step function, k = 1142, and rg = @(m;+mi1)Y/3/(3M,)1/3.




e.g., N-body simulations of planet growth by Hansen & Murray (2013)
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Statistical mechanics of planetary systems

N-planet distribution function

N
p(ai,e1,...,an,enN) X Hdaidef Hla;y1(1 —e;r1) —ai(14+¢e;) — krgy]

=il

where H (-) is the step function, k = 1142, and rg = a(m;+m;1)'/3/(3M,)/3.

Predictions:

* eccentricity distribution
* distribution of semi-major axis differences between nearest neighbors:

‘ r _ I
p(a’ — a) = 4 G(a. a kr")

2art 2ar

where
G(z) = 6exp(—z) — exp(—2z)(z® + 322 + 6z + 6).



e.g., N-body simulations of planet growth by Hansen & Murray (201 3)
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Statistical mechanics of planetary systems

N-planet distribution function

N
p(ai,e1,...,an,en) H da;de; Hlai11(1 — eir1) — a;(1+ e;) — krp]

=

where H (-) is the step function, k = 1142, and rg = a(m;+m;41)'/3/(3M,)1/3.

Predictions:

* eccentricity distribution
e distribution of semi-major axis differences
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Kepler planets, using observed mass-

Hansen & Murray (2013) simulations radius relation (VWeiss & Marcy 2014):
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Kepler planets, using observed mass-
Hansen & Murray (2013) simulations radius relation (Weiss & Marcy 2014):
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Kepler planets, using observed mass-
radius relation (VWeiss & Marcy 2014):

:I_ ! [ T S B O Pt bl
0

0.5 1
(a’-a-kry)/a =

missing planets?



e with T=0.03 ergodic model predicts

<e>=
€ 0-36 o Kepler planets, using observed mass-
¢ <e>=0.02-0.03 (Hadden & Lithwick radius relation (Weiss & Marcy 2014):
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* ergodic model predicts no
correlation between mass and a0 b
eccentricity in a given system -
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The stability of the solar system

» all planetary orbits are chaotic, with Liapunov time t. ~ 5-20 Myr =
> 200 e-folds in the lifetime of the solar system

» most of the chaotic behavior is in the orbital phases of the planets,
not the overall shapes and sizes of the orbits;

* however, the eccentricity of Mercury’s orbit undergoes a random

walk and there is about a 1% chance that it will be destroyed before
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