
The long-term stability of the solar system



Long-term stability of the solar system

The problem:
    A point mass is surrounded by N > 1 much smaller masses on 

nearly circular, nearly coplanar orbits. Is the configuration stable 
over very long times (up to 1010 orbits)? 

Why is this interesting?

•  one of the oldest problems in theoretical physics 



Newton (1642-1726):

     “blind fate could never make all the planets move one 
and the same way in orbs concentric, some 
inconsiderable irregularities excepted, which could 
have arisen from the mutual actions of planets upon 
one another, and which will be apt to increase, until 
this system wants a reformation”
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Gottfried Leibnitz (1646-1716):

     “Sir Isaac Newton and his followers have also a very 
odd opinion concerning the work of God.  According 
to their doctrine, God Almighty wants to wind up his 
watch from time to time: otherwise it would cease to 
move. He had not, it seems, sufficient foresight to 
make it a perpetual motion”
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Pierre-Simon Laplace (1749-1827):

     “an intelligence knowing, at a given instant of time, 
all forces acting in nature, as well as the 
momentary positions of all things of which the 
universe consists, would be able to comprehend 
the motions of the largest bodies of the world and 
those of the smallest atoms in one single formula, 
provided it were sufficiently powerful to subject all 
data to analysis. To it, nothing would be uncertain; 
both future and past would be present before its 
eyes.” 
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    A point mass is surrounded by N > 1 much smaller masses on 

nearly circular, nearly coplanar orbits. Is the configuration stable 
over very long times (up to 1010 orbits)? 

Why is this interesting?

•  one of the oldest problems in theoretical physics
•  what is the fate of the Earth?

four choices:
1. in about 7 × 109 years, the Sun exhausts 

its fuel and expands into a giant star, 
heating the Earth to several thousand K 
and perhaps swallowing it

2. the Earth or some other planet’s orbit is 
unstable, and they collide

3. the Earth’s orbit is unstable and it falls 
into the Sun

4. the Earth’s orbit is unstable, and it is 
ejected into interstellar space



Long-term stability of the solar system

The problem:
    A point mass is surrounded by N > 1 much smaller masses on 

nearly circular, nearly coplanar orbits. Is the configuration stable 
over very long times (up to 1010 orbits)? 

Why is this interesting?

•  one of the oldest problems in theoretical physics
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•  why are there so few planets in the solar system?
•  can we calibrate the geological timescale over the last 50 Myr? 



Huybers (2007)
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• can we explain the properties of extrasolar planetary systems?



Long-term stability of the solar system

The problem:
    A point mass is surrounded by N > 1 much smaller masses on 

nearly circular, nearly coplanar orbits. Is the configuration stable 
over very long times (up to 1010 orbits)? 

How can we solve this?

• many famous mathematicians and physicists have attempted to find 
solutions, with limited success (Newton, Laplace, Lagrange, Gauss, 
Poisson, Poincaré, Kolmogorov,  Arnold, Moser, etc.) 



Long-term stability of the solar system

Les personnes qui s'interéssent aux progrès de la Mécanique céleste...doivent
éprouver quelque étonnement en voyant combien de fois on a démontré la 
stabilité du système solaire. 
Lagrange l'a établie d'abord, Poisson l'a démontrée de nouveau, d'autres
démonstrations sont venues depuis, d'autres viendront encore. Les démonstrations 
anciennes étaient-elles insuffisantes, ou sont-ce les nouvelles qui sont superflues?

Those who are interested in the progress of celestial mechanics…must feel
some astonishment at seeing how many times the stability of the Solar System
has been demonstrated.
Lagrange established it first, Poisson has demonstrated it again, other 
demonstrations came afterwards, others will come again.  Were the old 
demonstrations insufficient, or are the new ones unnecessary?
                                                                                               Poincaré (1897)



Long-term stability of the solar system

The problem:
    A point mass is surrounded by N > 1 much smaller masses on 

nearly circular, nearly coplanar orbits. Is the configuration stable 
over very long times (up to 1010 orbits)? 

How can we solve this?

• many famous mathematicians and physicists have attempted to find 
solutions, with limited success (Newton, Laplace, Lagrange, Gauss, 
Poisson, Poincaré, Kolmogorov,  Arnold, Moser, etc.)

• only feasible approach is numerical computation of the planetary 
orbits  



Long-term numerical integrations of 
the solar system

why are these hard?

• most improvements in speed in modern computers come through 
massive parallelization, and this problem is difficult to parallelize 
- for N planets only N(N-1)/2 operations can be done in parallel; if N=8 

then N(N-1)/2=28
- parallel-in-time (e.g., parareal) algorithms have not been explored much 

(Saha, Stadel, & Tremaine 1997, Jiménez-Pérez & Laskar 2011)
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- for N planets only N(N-1)/2 operations can be done in parallel; if N=8 

then N(N-1)/2=28
- parallel-in-time (e.g., parareal) algorithms have not been explored much 

(Saha, Stadel, & Tremaine 1997, Jiménez-Pérez & Laskar 2011)

• sophisticated integration algorithms are needed to avoid numerical 
dissipation 



Consider following a test particle in the force field of a point mass. Set 
G=M=1 for simplicity. Equations of motion read

Examine three integration methods with timestep h:   

1. Euler’s method

Euler methods are first-order; leapfrog is second-order; Runge-Kutta is fourth 
order

3. leapfrog 

4. Runge-Kutta 
method 

2. modified Euler’s



eccentricity = 0.2

200 force evaluations 
per orbit with each 
method

plot shows fractional 
energy error |ΔE/E|



(operator splitting)



A geometric integration algorithm is a numerical 
integration algorithm that preserves some geometric 
property of the original set of differential equations 

(e.g., symplectic algorithms, time-reversible algorithms)

The motivation for geometric integration algorithms is 
that preserving the phase-space geometry of the flow 

determined by the real dynamical system is more 
important than minimizing the one-step error





mixed-variable symplectic 
integrator 
(Wisdom & Holman 1992)



Long-term numerical integrations of 
the solar system

why are these hard?

• most improvements in speed in modern computers come through 
massive parallelization, and this problem is difficult to parallelize 

• sophisticated algorithms are needed to avoid numerical dissipation 
• roundoff error:

- typically a few bits per timestep ⇒ fractional error of a few times 2-53  
in standard double precision ~ a few times 10-16

- systematic roundoff: 20 steps/orbit × 1010 orbits × 2-53 (53 bits in 
double precision) = 2 × 10-5

- random roundoff: (20 steps/orbit × 1010 orbits)1/2 × 2-53 = 5 × 10-11

- how to eliminate systematic roundoff:

‣ use machines with optimal floating-point arithmetic (IEEE 754 standard)

‣ eliminate all fixed non-representable numbers (⅓, π, etc.)

‣ check that errors in orbital elements grow as t1/2, not t



The equations of motion for the solar system

“Small corrections” include:
•  satellites of the planets
• general relativity
• largest asteroids

All are at levels of less than 10-6 and all are straightforward to include 

+ small corrections

Newton’s law of gravity and Newton’s laws of motion 
for 8 planets + the Sun:
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• smaller asteroids and Kuiper belt beyond Neptune 
•  mass loss from Sun
•  drag of solar wind on planetary magnetospheres
• tidal forces from the Milky Way 
• passing stars (highly unlikely)
• errors in planetary masses or initial conditions

All are at levels of less than 10-8

+ small corrections



The equations of motion for the solar system

Newton’s law of gravity and Newton’s laws of motion 
for 8 planets + the Sun:

Unknowns include:
• smaller asteroids and Kuiper belt beyond Neptune 
•  mass loss from Sun
•  drag of solar wind on planetary magnetospheres
• tidal forces from the Milky Way 
• passing stars (highly unlikely)
• errors in planetary masses or initial conditions

All are at levels of less than 10-8

+ small corrections

To very high accuracy, the solar system is 
an isolated dynamical system described 

by a known set of equations, with known 
initial conditions
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Ito & Tanikawa (2002)

50 Myr into the future just before the Sun dies 
(7 Gyr in the future)

50 Myr into the past

innermost four 
planets 
(Mercury, Venus, 
Earth, Mars)

just after the solar system 
was formed (4.5 Gyr in the 
past)



Two kinds of dynamical system

• highly predictable, “well-
behaved”

• small differences grow 
linearly: Δx, Δv ∝ t

• e.g. baseball, golf, simple 
pendulum, all problems in 
mechanics textbooks, 
planetary orbits on short 
timescales

Chaotic

• difficult to predict, “erratic”

• small differences grow 
exponentially at large times: Δx, 
Δv ∝ exp(t/tL) where tL is 
Liapunov time

• appears regular on timescales 
short compared to Liapunov time  
⇒ linear growth of small changes 
on short times, exponential 
growth on long times

• e.g. roulette, dice, pinball, weather, 
billiards, double pendulum

Regular



The stability of the solar system

• all planetary orbits are chaotic, with Liapunov time  tL ~ 5-20 Myr ⇒ 
> 200 e-folds in the lifetime of the solar system (Sussman & Wisdom 
1988, Laskar 1989, Sussman & Wisdom 1992, Hayes et al. 2010) 



Jupiter

factor of 1,000

saturated

3 × 108 yr 
(7% of solar system age)Sussman & Wisdom (1992)
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• double-precision (p=53 bits) 2nd order mixed-variable symplectic method with h=4 days and 
h=8 days 

• double-precision (p=53 bits) 14th order multistep method with h=4 days
• extended-precision (p=80 bits) 27th order Taylor series with h=220 days

   saturated

t L
=10 Myr

2 × 108 yr 
(5% of solar system age)

Hayes (2008)



The stability of the solar system

• all planetary orbits are chaotic, with Liapunov time  tL ~ 5-20 Myr ⇒ 
> 200 e-folds in the lifetime of the solar system (Sussman & Wisdom 
1988, Laskar 1989, Sussman & Wisdom 1992, Hayes et al. 2010) 

• most of the chaotic behavior is in the orbital phases of the planets, 
not the overall shapes and sizes of the orbits

Ito & Tanikawa (2002)



The stability of the solar system

• all planetary orbits are chaotic, with Liapunov time  tL ~ 5-20 Myr ⇒ 
> 200 e-folds in the lifetime of the solar system (Sussman & Wisdom 
1988, Laskar 1989, Sussman & Wisdom 1992, Hayes et al. 2010) 

• most of the chaotic behavior is in the orbital phases of the planets, 
not the overall shapes and sizes of the orbits

• implications:
• accurate predictions for the positions of the planets can only be made for 

~1% of the age of the solar system 

• for longer times we can only make statistical statements about the future 
of the solar system, by running many calculations with small changes in 
initial conditions

• solar system is a bad example of a clockwork universe



Pierre-Simon Laplace (1749-1827):

     “an intelligence knowing, at a given instant of time, all forces acting in 
nature, as well as the momentary positions of all things of which the 
universe consists, would be able to comprehend the motions of the 
largest bodies of the world and those of the smallest atoms in one 
single formula, provided it were sufficiently powerful to subject all data 
to analysis. To it, nothing would be uncertain; both future and past would 
be present before its eyes.” 

accurate predictions for the positions of 
the planets can only be made for 1% of 
the age of the solar system; for longer 

times we can only make statistical 
statements about the future



The stability of the solar system

• all planetary orbits are chaotic, with Liapunov time  tL ~ 5-20 Myr ⇒ 
> 200 e-folds in the lifetime of the solar system (Sussman & Wisdom 
1988, Laskar 1989, Sussman & Wisdom 1992, Hayes et al. 2010) 

• most of the chaotic behavior is in the orbital phases of the planets, 
not the overall shapes and sizes of the orbits

• however, the shape of Mercury’s orbit changes randomly 

• in about 1% of integrations, Mercury undergoes a catastrophic event 
(collision with Sun or another planet, escape from the solar system, 
etc.)



maximum eccentricity of Mercury over 1 Myr running window, for 
2500 nearby initial conditions

Laskar & Gastineau (2009)



The stability of the solar system

• all planetary orbits are chaotic, with Liapunov time  tL ~ 5-20 Myr ⇒ 
> 200 e-folds in the lifetime of the solar system (Sussman & Wisdom 
1988, Laskar 1989, Sussman & Wisdom 1992, Hayes et al. 2010) 

• most of the chaotic behavior is in the orbital phases of the planets, 
not the overall shapes and sizes of the orbits

• however, the shape of Mercury’s orbit changes randomly 

• in about 1% of integrations, Mercury undergoes a catastrophic event 
(collision with Sun or another planet, escape from the solar system, 
etc.)

• results are very sensitive to details:
• not including relativity increases fraction of high-eccentricity outcomes from 1% 

to 60%

• even within observational error in initial conditions, only ~70% of trajectories are 
chaotic (Hayes 2008)



The stability of the solar system

• all planetary orbits are chaotic, with Liapunov time  tL ~ 5-20 Myr ⇒ 
> 200 e-folds in the lifetime of the solar system (Sussman & Wisdom 
1988, Laskar 1989, Sussman & Wisdom 1992, Hayes et al. 2010) 

• most of the chaotic behavior is in the orbital phases of the planets, 
not the overall shapes and sizes of the orbits

• however, the shape of Mercury’s orbit changes randomly 

• in about 1% of integrations, Mercury undergoes a catastrophic event 
(collision with Sun or another planet, escape from the solar system, 
etc.)

• results are very sensitive to details

• most likely, ejections or collisions of planets have already occurred



Jupiter Saturn Uranus Neptune

impacted Sun

survived

ejected

Oort comet cloud

Shannon + (2015)

(units of Earth-Sun distance)



• orbits of planets in the solar system are chaotic
• probably chaotic evolution of orbits has led to collisions and 

ejections of planets in the past 
• can aspects of this process be described analytically i.e., without 

integrating orbits?

There are many bad examples of attempts to explain the properties 
of planetary orbits from first principles, e.g.,

- Kepler’s zeroth law 

- Titius-Bode law

Nevertheless there are reasons to try again:
- N-body integrations allow approximate analytic models to be tested 

- Kepler has provided a large statistical sample of multi-planet systems 
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Dawson, Lissauer, & Tremaine (2015)



The range of strong interactions from a planet of mass m orbiting a star of mass M 
in a circular orbit of radius a is the Hill radius

Numerical integrations show that planets of mass m, m′ with semi-major axes a, a’, 
a < a’ are stable for N orbital periods if closest approach exceeds k Hill radii, or 

typically k(1010) ≃ 11 ± 2

Pu & Wu (2014)

pericenter of 
outer planet

apocenter of 
inner planet



The sheared sheet
 

Problem: statistical mechanics works best on homogeneous systems with N >> 1, 
whereas planetary systems have large-scale radial gradients and N < 10 
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The sheared sheet
 

Problem: statistical mechanics works best on homogeneous systems with N >> 1, 
whereas planetary systems have large-scale radial gradients and N < 10 

Ansatz:  planetary systems fill uniformly the region of 
phase space allowed by stability (~ ergodic model)



1.  Use the sheared sheet approximation
2.   Assume systems fill the region of phase space allowed by stability (ergodic 
model)

Leads to an N-planet distribution function

For comparison the distribution function for a one-dimensional gas of hard rods of 
length L (Tonks 1936) is 

} phase-space volume
apocenter and pericenter must 
be separated by k Hill radii

step function



N-planet distribution function

Predictions:

• eccentricity distribution:

   where τ is a free parameter 



e.g., N-body simulations of planet growth by Hansen & Murray (2013)

p(e) ~ e exp(-e/τ)
τ = 0.060 ± 0.003 



Statistical mechanics of planetary systems

N-planet distribution function

Predictions:

• eccentricity distribution
• distribution of semi-major axis differences between nearest neighbors:

✔ ︎ with one free parameter



e.g., N-body simulations of planet growth by Hansen & Murray (2013)

τ = 0.060 ± 0.003 

(a´-a-krH)/ā
unstable region



Statistical mechanics of planetary systems

N-planet distribution function

Predictions:

• eccentricity distribution
• distribution of semi-major axis differences

✔ ︎ with one free parameter
✔ ︎ with no free parameters



Kepler planets, using observed mass-
radius relation (Weiss & Marcy 2014):Hansen & Murray (2013) simulations
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Kepler planets, using observed mass-
radius relation (Weiss & Marcy 2014):Hansen & Murray (2013) simulations
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Kepler planets, using observed mass-
radius relation (Weiss & Marcy 2014):Hansen & Murray (2013) simulations

convolve theoretical distribution with the scatter 
in the mass-radius relation

(a´-a-krH)/ā (a´-a-krH)/ā



τ = 0.03

}

missing planets?

(a´-a-krH)/ā

Kepler planets, using observed mass-
radius relation (Weiss & Marcy 2014):



τ = 0.03

• with τ=0.03 ergodic model predicts 
<e>=0.06
• <e>≃0.02-0.03 (Hadden & Lithwick 

2014,2015)
• <e>≃0.03 (Fabrycky et al. 2014)
• <e>≃0.04 (van Eylen & Albrecht 2015) 
• <e>≃0.07 (Shabram et al. 2015)

}

missing planets?
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Kepler planets, using observed mass-
radius relation (Weiss & Marcy 2014):



τ = 0.03

• with τ=0.03 ergodic model predicts 
<e>=0.06
• <e>≃0.02-0.03 (Hadden & Lithwick 

2014,2015)
• <e>≃0.03 (Fabrycky et al. 2014)
• <e>≃0.04 (van Eylen & Albrecht 2015) 
• <e>≃0.07 (Shabram et al. 2015)

}

missing planets?

• ergodic model predicts no 
correlation between mass and 
eccentricity in a given system 

(a´-a-krH)/ā

Kepler planets, using observed mass-
radius relation (Weiss & Marcy 2014):



The stability of the solar system

• all planetary orbits are chaotic, with Liapunov time  tL ~ 5-20 Myr ⇒ 
> 200 e-folds in the lifetime of the solar system  

• most of the chaotic behavior is in the orbital phases of the planets, 
not the overall shapes and sizes of the orbits;

• however, the eccentricity of Mercury’s orbit undergoes a random 
walk and there is about a 1% chance that it will be destroyed before 
the end of the Sun’s life 

• results are very sensitive to details, e.g., relativistic effects

• most likely, ejections or collisions of planets have already occurred 

• simple ergodic models capture many of the statistical properties of 
the orbits in extrasolar planetary systems 


