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An Unparalleled Stoty-of Firsts

* First gravitational wave detection of a neutron star binary merger
* First joint detection of gravitational waves and light

* First direct confirmation that short gamma-ray bursts result from
neutron star binary mergers

* First direct evidence that r-process nucleosynthesis is dominated by
neutron star binary mergers

* First constrains on the remnant of a neutron star binary merger

* First use of a neutron star binary merger to measure the Hubble
Constant






A Confluence of Physics Research Areas
This single event brings together and impacts multiple disparate
field of physics:

* Gravity / General Relativity (gravitational waves)

* Nuclear physics (r-process nucleosynthesis; NS equation of state)
* Atomic physics (opacities of r-process elements)

* High-energy astrophysics (origin of gamma-ray bursts)

e Stellar and binary evolution (NS binary properties)

* Cosmology (Hubble constant)



~ Outline ',




e Gravitational wave sources and detectors
e Electromagnetic counterparts: Why and what!?
e GWI170817 in gravitational waves

e GWI170817 in electromagnetic radiation
* Discovery of the optical counterpart

* Complex ejecta structure and the origin of the heavy elements

 The future of gravitational wave astronomy
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Strain: ~N — —

Frequency: f ~ A/ Gp

For ground-based detectors,
operating at ~10-1000 Hz, the
sources of interest are neutron
star and stellar mass black hole
binaries (and core-collapse SNe)
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Gravitational Wave, Sources «

Strain: ~N — —

Frequency: f ~ A/ Gp

For ground-based detectors,
operating at ~10-1000 Hz, the
sources of interest are neutron
star and stellar mass black hole
blnal’ieS (and COI’e-CO”aPSG SNe) 1975 1980 1985 90 1995 2000 2005
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(eLISA, operating at 0.001-0.1 Hz, will be sensitive to supermassive binary black hole
mergers & white dwarf binary mergers)
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To detect gravitational waves need to measure the arm lengths to
h=AL/L~ 10722



LIGO/Virga &+

ST

To detect gravitational waves need to measure the arm lengths to
h=ALL~ 102 = 1073 size of proton; nearest star to 10 pm
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LIGO/Virgo: First Detection (BBH).

Hanford, Washington (H1) Livingston, Louisiana (L1) Abbott et al.
2015

- L1 observed
| H1 observed (shifted, inverted)
I

Strain (1072%)

—— Numerical relativity — Numerical relativity
Rcconstructed (wavelet) Reconstructed (wavelet)
-Rcconstruc!cd (lemplalc) BN Reconstructed (templatc)
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35+30 Me black hole binary at 450 Mpc, with 3 Me radiated in GW



~ Electromagnetic Counterparts:Why

* Precise position
GW170104

e Distance
LVT151012

e Host / context

GW151226

S GW170817

-~ GW150914

GW17081

LIGO/Virgo/NASA/Leo Singer
(Milky Way image: Axel Mellinger)

S. Rosswog
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‘r-Process Nucleosynthesis: “Kilgnova™ -

* Tidal tails (NS-NS/NS-BH)

* Accretion disk wind (NS-NS/NS-BH)
* | ®Shocked interface (Ns-NS)

e.g. Lattimer & Schramm 1974; Li & Paczynski 1998;
< Rosswog Rosswog et al. 1999; Freiburghaus et al. 1999; Metzger

et al. 2008; Kasen et al. 2013; Metzger 2017

The presence, mass, velocity of these components depend on the
nature of the merging objects (NS-NS vs. NS-BH, mass ratio) and the
remnant (prompt BH, delayed BH, stable NS)

The observational manifestation also depends on nucleosynthesis
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r-Process Nucleosynthesis: “Kilanova™ -

Brightness and spectrum depend on heating rate & opacity
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Brightness and spectrum depend on heating rate & opacity
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r-Process Nucleosynthesis: “Kilanova™ -

Brightness and spectrum depend on heating rate & opacity
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Challenge: faint, rapid, (potentially red) transient in ~100 deg?
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Deep, red, wide-field imaging: Dark Energy Camera on the Blanco
4-m telescope at CTIO




Our .Follow-'up Program:; .' B_adig th_rays

Deep, red, wide-field imaging: Dark Energy Camera on the Blanco
4-m telescope at CTIO




GW170817: The First BNS Merger

Abbott et al. 2017

ormalized amplitude




GW!170817: The First BNS Merger -

Abbott et al. 2017

Normalized amplitude BN (x| <0.05
2 4 6 ) B [x:| <0.89

LIGO-Livings

M = 1.4-1.6 Mo
M = |.2-1.4 Mo
Mtot ~ 2.74 M@

Tidal deformability:
A= 103




GW170817: The First BNS Merger

B (x| <0.05
B x| <089

R.A.= |3hQ9m
Dec. = —25°37’

A = 30 deg?
d ~ 24-48 Mpc

M = |.2-1.4 Mo
Mtot ~ 274 M@

Tidal deformability:
A= 103




GRBI70817%: wit

Abbott et al. 2017

. Aty
Wt RD Lt

Lightcurve from Fermi/GBM (10 — 50 keV)

Lightcurve from INTEGRAL/SPI-ACS
(> 100 keV)

|.7 sec delay between GVV and GRB

Ey is ~10° times smaller than in typical
short GRBs

—4 —2 0
Time from merger (s)
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DECam Discovery of Op'ti.c_aI,Countejrpj;ir-.t |

08:41 EDT Merger/GRB

09:21 LIGO Notification
13:54 Initial sky-map
19:13 DECam observations

19:54 Revised sky-map



DECam Discovery of Opti.c,al_Counterpqri ’

08:41 EDT Merger/GRB

09:21 LIGO Notification
13:54 Initial sky-map

PHIK DECam observations
19:54 Revised sky-map

93% of initial map (81% of final map)

Soares-Santos, EB et al. 2017
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DECam Discovery of Optical Countefrpﬁdr-'t |

From: Ryan Chornock <chornock@ohio.edu>

Date: Thu, Aug 17, 2017 at 8:42 PM

Subject: Re: All Eyes! G298048. Images will be downloadable here

To: Sahar Allam <sallam@fnal.gov>, "Berger, Edo" <eberger@cfa.harvard.edu>, Douglas L
Tucker <dtucker@fnal.gov>

Cc: "Philip S. Cowperthwaite" <pcowperthwaite@cfa.harvard.edu>, Dillon Brout
<dbrout@physics.upenn.edu>, Marcelle Soares Santos <marcelle@fnal.gov>, Dan Scolnic
<dscolnic@kicp.uchicago.edu>, des-gw <des-gw@fnal.gov>

Holy sHit.

Check out NGC 4993 in DECam_00668440 fits.fz[N5]
Attached is tonight's image + ps1-3pi.

Galaxy is at 40 Mpc.

R



DECam Discovery of Optical Countejrpjc_J.r-.t |

DECam discovery | Archival image

Galaxy is at 40 Mpc.
-R



GW170817
DECam observation
(0.5-1.5 days post merger)

Archival image

» ll

GW170817
DECam observation
(>14 days post merger)
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Light Curves & Kilonaova Models i &

Multi-component model:

Gradient from fast (~0.3c)
“blue” (lanthanide-poor)
ejecta to slow (~0.lc)
“red” (lanthanide-rich)
ejecta with =0.06 Mo
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Phase (days) Villar, EB et al. 2017



Light Curves & ;Kilqnovaj Models . r

Multi-component model:

Gradient from fast (~0.3c)
“blue” (lanthanide-poor)
ejecta to slow (~0.lc)
“red” (lanthanide-rich)
ejecta with =0.06 Mo
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A range of nucleosynthesis
and velocity (geometry?)
point to distinct origins for
the ejecta components

Phase (days) Villar, EB et al. 2017



Spectral luminosity

Optical/Near-IR Spectroscopys =

J GW170817
L SOAR + Gemini
1.5 days
after merger
| A‘-‘MH‘MW
4000 6000 8000 10000 12000 14000 16000 18000

Wavelength (A)



Spectral luminosity

Optical/Near-IR Spectroscopys =

J GW170817
L SOAR + Gemini
1.5 days
after merger
| A‘-‘MH‘MW
4000 6000 8000 10000 12000 14000 16000 18000

Wavelength (A)
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-UV/Optical/NIR: - Implications & i

* Direct (spectroscopic) evidence for r-process nucleosynthesis
* M¢j X Rens accounts for Galactic r-process production rate

¢ Mej,lan-rich / Mej,lan-poor ~ 0.15 = RMVV,A>I4O / RMVV,A<I4O
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* Direct (spectroscopic) evidence for r-process nucleosynthesis
* M¢j X Rens accounts for Galactic r-process production rate

¢ Mej,lan-rich / Mej,lan-poor ~ 0.15 = RMVV,A>I40 / RMVV,A<I4O

* Lanthanide-poor (“blue”) ejecta v = 0.3c = collision interface
= NS-NS



-UV/Optical/NIR: - Implications ' i

* Direct (spectroscopic) evidence for r-process nucleosynthesis
* M¢j X Rens accounts for Galactic r-process production rate

¢ Mej,lan-rich / Mej,lan-poor ~ 0.15 = RMVV,A>I40 / RMVV,A<I4O

* Lanthanide-poor (“blue”) ejecta v = 0.3c = collision interface
= NS-NS

* Lanthanide-rich (“red”) ejecta v = 0.lc = accretion disk wind

& high lanthanide fraction = NS for <0.| sec = BH
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* LIGO/Virgo Observing Run 3 will span all of 2019.
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The Future .

* LIGO/Virgo Observing Run 3 will span all of 2019.

* 50% improvement in sensitivity (BNS mergers to 120 Mpc) so
about 3% higher event rate (perhaps first NS-BH mergers).

* Open alerts!

* LIGO/Virgo will reach design sensitivity in 2021 (BNS mergers
to 200 Mpc) and operate almost continuously.

* Kagra and IndIGO in ~2022 & ~2025.

* Third generation detectors (US / Europe) in 2030s? Increased
sensitivity by an order of magnitude (e.g. all BBH mergers).






An Unparalleled Story of Firsts. " =
* The first joint detection of gravitational waves and light

(Y—rays to radio)

e First direct evidence that r-process nucleosynthesis
happens in, and is likely dominated by, BNS mergers

* Optical/IR data suggest NS-NS — BH
* More observations and interpretation underway

* We expect multiple new detections in 2019 and up to
few events per month by mid-2020s
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Prof, Dr. Edo Berqe




