Future directions of high-dispersion spectroscopy of exoplanets – and beyond Ignas Snellen, Leiden University

Matteo Brogi, Henriette Schwarz,, Jayne Birkby, Remco de Kok, Simon Albrecht, Remko Stuik, Gilles Otten, Jens Hoeijmakers, Andrew Ridden-Harper, Sebastiaan Haffert, Geert-J. Talens, Javi Alonso, Paul Molliere, Paul Wilson, Patrick Dorval, Dilovan Serindag, Yapeng Zhang, Aurelien Wyttenbach, Aurora Kesseli

Yesterday vs. Today

- Short introduction (Science/Techniques)
- High Resolution Spectroscopy challenges & prospects
- ESA Voyage: Exoplanet Science 2035 2050

A Revolution in Exoplanet Research

EXOPLANET REVOLUTION

Current Status of Exoplanet Science

2925

2900 2875 2850

What we can do now:

- Find planets down to Earth-size and mass; around small dwarf stars
- Characterization of gaseous planets; molecules, clouds, climate, circulation, spin

Lessons learned so far:

- Planets are very common;
 10% gas-giants, 25% Neptunes, >50% rock
- Planets show a large diversity; Hot Jupiters, super-Earths, mini-Neptunes

Exoplanet atmosphere observing techniques

Absorption (in percentage)

1.4

Exoplanet atmosphere observing techniques

Time-differential high-dispersion spectroscopy

- At R=100,000 molecular bands are resolved in tens of individual lines
- Strong doppler effects due orbital motion of the planet (up to >150 km/s).
- Moving planet lines are distinguished from stationary telluric + stellar lines

CRIRES@VLT

Transmission spectroscopy of CO at 2.3 um Of HD209458b (Snellen et al. 2010)

Emission spectroscopy of CO of tau Bootis (Brogi et al. 2012)

Differential RM effect during transit

- Amplitude of Rossiter McLaughlin Effect depends on planet size
- Size of planet influenced by absorption of atmosphere
- E.g. for Rayleigh Scattering effects

Model line shapes for fast rotating stars

Fei Yan & Henning 2018 - Halpha in Kelt-9b

Angular-differential high-dispersion spectrocopy HDS+HCI

Angular-differential high-dispersion spectrocopy HDS+HCI

Angular-differential high-dispersion spectrocopy HDS+HCI

Low spectral resolution Beta Pictoris with SINFONI (R=4000)

Hoeijmakers et al. 2018

Raw contrast = 250

Low spectral resolution Beta Pictoris with SINFONI (R=4000)

Raw contrast = 250 Final contrast = 100,000

0.8″

Hoeijmakers et al. 2018

What interesting stuff can be probed?

- Molecular and Atomic Abundances
- Atmospheric temperature structure

TiO in emission in WASP-33 (Nugroho et al. 2017) Direct proof of **thermal inversion**

As function of orbital Phase \rightarrow morning, afternoon, evening, and nightside spectra!

Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b

LETTER

H. Jens Hoeijmakers^{1,2}, David Ehrenreich¹, Kevin Heng²*, Daniel Kitzmann², Simon L. Grimm², Romain Allart¹, Russell Deitrick², Aurélien Wyttenbach¹, Maria Oreshenko², Lorenzo Pino¹, Paul B. Rimmer^{3,4}, Emilio Molinari^{5,6} & Luca Di Fabrizio⁵

What interesting stuff can be probed?

Winds, Circulation & Rotation

Winds as function of altitude; equatorial jets; global circulation (climate); spin rotation; tidal locking

Exospheres

Understanding the evolution of atmospheres – atmospheric escape – interaction with their host stars (hot Jupiters to terrestrial planets)

Surface Sputtering & disintegrating planets

Na & Ca+ tails of planet Mercury 55 Cnc e: Ca+?? [Ridden-Harper et al. 2016]

Ridden-Harper – PhD thesis

Evaporating atmospheres in helium with CARMENES

Nortmann et al. *Science*, 2018 CARMENES spectrograph – WASP-69b

Also: Oklopcic & Hirata 2018; Spake et al. 2018; Salz et al. 2018; Allart et al. 2018; 2019)

What interesting stuff can be probed?

Clouds, hazes, scattering processes

HDS in transmission probes effectively higher up in the atmosphere – probe molecular absorption above the clouds?

Isotopes and Isotopologues [Paul; Ian]

New way to probe the origin and evolution of planets and their atmosphere? Accretion history – history of atmospheric escape

Molliere & Snellen 2018:

- 13C/12C is easy, and should soon be doable (but not so interesting?)
- HDO/H2O is very interesting and maybe in reach of 10m class telescopes
- D/H (HDO, CH₃D) is great for METIS@ELT. Even D/H for Proxima b

How can we achieve progress?

Easier Targets!

Think Kelt-9b; WASP-189b; MASCARA 1b&2b; TESS

- Better algorithms [e.g. Machine Learning Chloe Fisher et al] "SYSREM gets rid of all the red noise, but removes half of my planet signal"
- Better models your observations are only as good as your model → your model is only as good as your line list
- 4. Combine HDS with low-resolution information
- Wider instantaneous wavelength range more lines give more signal [GIANO; CARMENES; SPIROU; CRIRES+]
- 6. More stable instruments and detectors
- 7. Better Throughput with new instrument concepts

How can we achieve progress?

9. Purpose-built instrumentation for HDS+HCI SPHERE & ESPRESSO; SPHERE & CRIRES+; LEXI (PhD thesis S. Haffert)

Proxima b: $F_p/F_* \sim 2 \times 10^{-7}$ at $2\lambda/D$ @ 0.75 µm

- SPHERE XAO upgrade
- vAPP coronagraphy
- ESPRESSO IFU mode
- ESPRESSO fiber injection upgrade

Reflected light in 30 nights O2 in 60 nights

[Lovis et al. 2017]

Technology development

- CRIRES+ (Vigan+)
- SCExAO + IRD (Subaru JP)
- MagAO-X + RHEA (Magellan USA)
- Keck Planet Imager + Characterizer

How can we achieve progress?

10. Bigger Telescopes!

NAS Exoplanet Science Strategy Report 2018:

Finding: GMT and TMT, equipped with high-resolution optical and infrared spectrographs, will be powerful tools for studying the atmospheres of transiting and non-transiting close-in planets, and have the potential to detect molecular oxygen in temperate terrestrial planets transiting the closest and smallest stars.

ELT: First-light instrument METIS will have a R=100,000 IFU (L & M)

HIRES will be the HDS instrument in the optical/NIR

Atmospheric characterization of temperate rocky planets around nearby Mdwarfs, including possible biomarker gases

Beyond **Ground-based High-res** spectroscopy

Context: Long-term planning of ESA

- Scientific program relies on long-term planning of its priorities
- Horizon 2000 (1983)

→ Cassini-Huygens; Rosetta; Herschel; Planck

Horizon 2000+ (1994)

→ Gaia; BepiColombo; JWST

Cosmic Vision (2004)

→ Juice; Athena; LISA (CHEOPS; Euclid; PLATO; ARIEL)

Voyage 2050 (now!) <u>**** 2035 – 2050 period ****</u> Goal: select research areas for 3 L-class missions (~1 Geuro) identify high-impact science themes for M-missions identify science themes for investment in long-term tech development

The Process

- Call for white papers (August 2019)
- Selection of senior committee
- Supported by topical teams
- Workshop last October
- Interactions with topical teams (next 6-months)
- Recommendations from topical teams to senior committee
- Final recommendation of senior committee to SPC(?)/Directorate

Senior committee

Linda Tacconi (Chair) Max Planck Institute for Extraterrestrial Physics, Garching, Germany

Alessandra Buonanno Max Planck Institute for Gravitational Physics, Potsdam, Germany

Amina Helmi University of Groningen, The Netherlands

Jérémy Leconte CNRS/Bordeaux University, France

Rumi Nakamura Space Research Institute, Austrian Academy of Sciences, Austria Chris Arridge (Co-Chair) Lancaster University, United Kingdom

Mike Cruise Retired, United Kingdom

Luciano Iess Sapienza University of Rome, Italy

Jorrit Leenaarts Stockholm University, Sweden

Darach Watson University of Copenhagen Denmark Olivier Grasset University of Nantes, France

Elichiro Komatsu Max Planck Institute for Astrophysics, Garching, Germany

Jesús Martín-Pintado Spanish Astrobiology Center (CAB), Madrid, Spain

Topical Team Membership

С.

Solar/Plasma	Solar System	Star/Galaxy Evolution	Extreme Universe	Cosmology/Fund. Phys
B. Lavraud J. DeKeyser I. DeMoortel L. Fletcher D. Fontaine R. Harrison H. Nilsson J. Soucek F. Valentini	F. Abernethy B. Charnay M. El-Maarry J. Flahaut C. Freissinet A. Garcia Muñoz A. Genova B. Langlais M. Massironi A. Mura G. Tobie J. Trigo-Rodrigue	K. Caputi L. Labadie S. Mathis L. Wang A. Quirrenbach A. Vallenari L. Buchhave E. Choquet A. Santerne F. van der Tak X. Luri H. Cegla	A. DeRosa J. Gair R. Kotak G. Nelemans A. Petiteau	S. Ettori P. de Bernardis P. Natoli C. de Rham T. Sotiriou

White papers

 ~100 white papers submitted – 32 presented at workshop Solar system science: 25 Sun & Plasma Physics: 15 Galaxies/cosmology: 14 High-Energy/Xrays: 12 Fundamental Physics/GW: 8
 Exoplanets/Planet@Starformation: 15

E.g.: Snellen; Snik; Kenworthy; de Boer; Miguel; Kreidberg; Keller (+60 et al.): Detecting life outside our solar system with a large high-contrast-imaging mission

Sascha Quanz et al.:

Atmospheric characterization of terrestrial exoplanets in the mid-infrared: biosignatures, habitability & diversity [Nulling Interferometer]

Exoplanets: What to expect 2020 – 2035?

- Great new observatories: JWST (2021) & Extremely Large Telescopes (2026)
- NASA TESS; WFIRST; ESA Gaia; CHEOPS (2019); PLATO (2026); ARIEL (2028)

Likely Status - 2035:

- Nearby transiting planet population unveiled
- Local planet M-dwarf population known
- Twin-Earths around Sun-like stars still challenging
- In-depth statistical data on hot/warm gaseous planets
- First atmospheric studies of few Earths/M-dwarfs
- Atmospheric constituencies of Proxima-b/TRAPPIST-1
- Atmospheric characterization of twin-Earths around sun-like stars, out of reach

Exoplanet science drivers in 2035 and beyond

- Planetary architectures around Sun-like stars
- Atmospheres of the wide diversity of planets
- Climates + physical/chemical processes & Geology
- Main constituencies of temperate-rocky-planet:
- N₂/CO₂ dominated atmospheres?
- H₂O present?
- O₂ CH₄ Biomarker gases present?
- Biomarker gases due to biotic or abiotic processes?

<u>Biosignature</u>: an effect of biological activity on its environment, detectable at interstellar distances <u>Requirements:</u> Surface ocean? geological activity? magnetic field?

Life detection will always require understanding of evolutionary and geophysical context of a planet

Challenges

- → Transits too infrequent and signal too small
- → Contrast too large for ground-based telescopes

Solutions

- **1. Large High-Contrast-Imaging Telescope** [LUVOIR/HabEx/ESA-alone]
- 2. IR Space Interferometer (*talk*: Sasha Quanz)
- 3. Potential others: starshade + ground-based telescopes [*wp*: Janson]

ESA should be able to make an educated decision in 10 yrs Start a European development program for technology validation <u>now</u>

Requirements for a HCI Space Mission

- A contrast of 10⁻¹⁰ at an IWA of 80 -100 m.a.s.^a
- Wavelength range covering the optical and NIR
- Sufficient Spectral Resolution for molecular detections
- Light Collecting Power + mission life time = # planetary systems

^a depends on λ / starshade

Current NASA studies

Habitable Exoplanet Observatory 4m Telescope + External Occulter

Overall Exoplanet Yields

Large UV/Optical/IR Telescope - LUVOIR 8m & 16m aperture

Planet yield: [10 – 55] & [20 – 110] Earth Analogs

General-purpose observatory

ESA stand-alone mission?

NASA **WFIRST** is the only HCI mission (as tech demonstrator). Opportunity for **full science+technology demonstrator** mission? *Bridge the gap between young-Jupiter and Earth-analog science*

3-meter ESA HCI telescope:

- Jupiter analogs out to 50 lyr
- Dozen(s) of sub-Neptunes
- Down to rocky planets

The road ahead – central message & recommendations

ESA should be able to make an educated decision in 10 yrs Start a European development program for technology validation

<u>now</u>

A technological and science development path for Europe

- Testbeds for technology demonstration for HCI in space
- Increase TRL of specific technologies and subsystems
- Possible opportunity for full science+technology demonstrator mission?

European Expertise areas [wp Sect. 5.5]

Large space telescopes Adaptive Optics Coronagraphy Wavefront sensing System design Spectroscopy Polarization techniques Detectors Astrophotonics Data-reduction techniques

A census of support from the Exoplanet community

Belgium

Michael Gillon (University of Liege) Anne-Lise Maire (University of Liege)

Denmark

Lars Buchhave (DTU Copenhagen) Simon Albrecht (Aarhus University)

France

Anne-Marie Lagrange (Grenoble University) Mamadou N'Diaye (Obs. Cote d'Azur) Arthur Vigan (LAM Marseille) Pierre Baudoz (Observatoire de Paris) Elsa Huby (Observatoire de Paris) Anthony Boccaletti (Observatoire de Paris) Franck Selsis (University of Bordeaux) David Mouillet (Grenoble University) Jean-Luc Beuzit (LAM Marseille)

Germany

Ludmila Carone (MPIA Heidelberg) Thomas Henning (MPIA Heidelberg) Markus Kasper (ESO) Oliver Krause (MPIA Heidelberg) Heike Rauer (DLR Berlin) Julien Milli (ESO) John Lee Grenfell (DLR Berlin) Roy van Boekel (MPIA Heidelberg) Ralf Launhardt (MPIA Heidelberg)

Ireland

Ernst de Mooij (DCU Dublin)

The Netherlands

Frans Snik (Leiden University) Matthew Kenworthy (Leiden University) Jos de Boer (Leiden University) Ignas Snellen (Leiden University) Yamila Miguel (Leiden University) Jayne Birkby (University of Amsterdam) Michiel Min (SRON) Daphne Stam (Technical University Delft) Pieter de Visser (SRON) Jean-Michel Désert (University of Amsterdam) Christoph Keller (Leiden University)

Switzerland

Willy Benz (University of Bern) Kevin Heng (University of Bern) Brice-Olivier Demory (University of Bern)

United Kingdom

Didler Queloz (University of Cambridge) Matteo Brogi (University of Warwick) Mark Claire (University of St. Andrews) Beth Biller (University of Edinburgh) Christiane Helling (University of St. Andrews) Nikku Madhusudhan (Univ. of Cambridge) Guillem Anglada-Escudé (QMU London) Nathan Mayne (University of Exeter) Tim Lenton (University of Exeter) Isabelle Baraffe (University of Exeter) Sasha Hinkley (University of Exeter)

Sweden

Markus Janson (University of Stockholm)

Italy

Alessandro Sozzetti (INAF – Torino) Giuseppina Micela (INAF – Palermo) Raffaele Gratton (INAF – Padova) Silvano Desidera (INAF – Padova) Riccardo Claudi (INAF – Padova) Valentina D'Orazi (INAF – Padova) Isabella Pagano (INAF – Catania) Giampaolo Piotto (Padova University)

Spain

Manuel Lopez-Puertas (IAA Granada) Ignasi Ribas (ICE Barcelona) Enric Palle (IAC Tenerife)

United States of America

Laura Kreidberg (Harvard University) Olivier Guyon (University of Arizona; HabEx) Bertrand Mennesson (NASA JPL; HabEx) Christopher Stark (STSCI; HabEx/LUVOIR) Victoria Meadows (Washington; LUVOIR) Scott Gaudi (Ohio State University; HabEx) Garreth Ruane (Caltech)

Thoughts, considerations, politics, strategies... (exoplanets)

- Exoplanet community showed a united front during workshop
- Main aim: get exoplanets selected as one of the L1-themes
 start tech development program
- Tension between visionary thinking "big and bold" and "cost caps"
- Most solar-system talks mentioned exoplanets
- ESA seems very willing to contribute to a HabEx/LUVOIR mission, if NASA selects this.
- By default, such contribution is probably not exoplanet related
- Could an ESA L-class mission (pride/flagship) be a contribution to something much bigger, or rather not?
- Is there too much dependence on US Decadal Process?
- Are we aiming too high with LUVOIR/HabEx (think TPF/Darwin)...

Thoughts, considerations, politics, strategies... (exoplanets)

- Interaction expected between topical teams and white paper leads
- Plan: convey message that there is also life in exoplanet science without LUVOIR/HabEx (pun intented)
- An ESA-alone direct-imaging mission is a real option: sub-HabEx
- → ARIEL surveys gas-giant Jupiters and Neptunes, few super-Earths(?)
- → ESA Direct Imaging mission (3m) surveys sub-Neptunes & Super-Earths, few Earths
- → Pre LUVOIR → Earths in habitable zones

Reflected light	HabEx (4m)	3m ESA	2m ESA
Jupiters	25	10	3
Neptunes	40	15	5
Super-Earths	100	40	12
Rocky planets	100 (10)	40 (4)	12 (1)

 In the end, such mission could well merge again with LUVOIR/HabEx