Combining Gravitational Waves and Electromagnetic Radiation to Decipher the Properties and Outcome of a Binary Neutron Star Merger

> Dark Energy Camera / CTIO i-band Time Relative to 2017 August 17

+0.5 Days

Credit: P. S. Cowperthwaite / E. Berger Harvard-Smithsonian Center for Astrophysics

Edo Berger (Harvard University)

Universität Bern – April 2018

Combining Gravitational Waves and Electromagnetic Radiation to Decipher the Properties and Outcome of a Binary Neutron Star Merger

> Dark Energy Camera / CTIO i-band Time Relative to 2017 August 17

+0.5 Days

Credit: P. S. Cowperthwaite / E. Berger Harvard-Smithsonian Center for Astrophysics

Edo Berger (Harvard University)

Universität Bern – April 2018

- Electromagnetic counterparts: Why and what?
- Short gamma-ray bursts as neutron star binary mergers
- GW170817 from radio to gamma-rays
 - UV/optical/IR: r-process nucleosynthesis
 - Radio/X-ray emission: off-axis jet & connection to short GRBs
 - Host galaxy properties: merger timescale

Electromagnetic Counterparts: Why & What

- Precise position
- Distance
- Host / context
- Behavior of matter
- Nature of remnant

S. Rosswog

Electromagnetic Counterparts: Why & What

- Precise position
- Distance
- Host / context
- Behavior of matter
- Nature of remnant

Predicted emission:

- Beamed & isotropic
- Relativistic & nonrelativistic
- Multi-wavelength

Metzger & EB 2012

• No SNe / elliptical hosts \implies old progenitor population

- No SNe / elliptical hosts \implies old progenitor population
- Host galaxy demographics ⇒ broad delay-time distribution (consistent with BNS models and Galactic BNS population)

- No SNe / elliptical hosts \implies old progenitor population
- Host galaxy demographics ⇒ broad delay-time distribution (consistent with BNS models and Galactic BNS population)
- Spatial offset distribution \implies natal kicks of ~10-10² km/s

EB 2010

~25% of short GRBs with optical afterglows have no coincident hosts to >27th mag in optical/NIR.

EB 2010

EB 2010

 $P(\leq \delta R) = 1 - e^{-\pi(\delta R)^2 \Sigma(\leq m)}$

Fong et al. 2010; EB 2010; Fong & EB 2013

- No SNe / elliptical hosts \implies old progenitor population
- Host galaxy demographics ⇒ broad delay-time distribution (consistent with BNS models and Galactic BNS population)
- Spatial offset distribution \implies natal kicks of ~10-10² km/s
- Afterglows $\implies E_K \sim \text{few} \times 10^{49} \text{ erg}, n \sim 0.01 \text{ cm}^{-3}, \theta_{jet} \sim 10^{\circ}$

- No SNe / elliptical hosts \implies old progenitor population
- Host galaxy demographics ⇒ broad delay-time distribution (consistent with BNS models and Galactic BNS population)
- Spatial offset distribution \implies natal kicks of ~10-10² km/s
- Afterglows $\implies E_K \sim \text{few} \times 10^{49} \text{ erg}, n \sim 0.01 \text{ cm}^{-3}, \theta_{jet} \sim 10^{\circ}$
- GRBI30603B ⇒ signature of r-process nucleosynthesis?

- No SNe / elliptical hosts \implies old progenitor population
- Host galaxy demographics ⇒ broad delay-time distribution (consistent with BNS models and Galactic BNS population)
- Spatial offset distribution \implies natal kicks of ~10-10² km/s
- Afterglows $\implies E_K \sim \text{few} \times 10^{49} \text{ erg}, n \sim 0.01 \text{ cm}^{-3}, \theta_{jet} \sim 10^{\circ}$
- GRBI30603B ⇒ signature of r-process nucleosynthesis?

EB 2014, ARA&A, 52, 43

EB et al. 2013; Tanvir et al. 2013

Decompressed n-rich ejecta \Rightarrow r-process (A > 130)

Gabriel Martinez Pindeo

Decompressed n-rich ejecta \Rightarrow r-process (A > 130)

Gabriel Martinez Pindeo

Decompressed n-rich ejecta \Rightarrow r-process (A > 130)

Gabriel Martinez Pindeo

Ejecta mass: $\sim 10^{-3} - 0.1 \text{ M}_{\odot}^{-1}$

Metzger 2017

Decompressed n-rich ejecta \Rightarrow r-process (A > 130)

Ejecta mass: ~ $10^{-3} - 0.1 M_{\odot}$

Metzger 2017

To calculate light curves: heating rate from *r*-process radioactive decay, opacities from *r*-process nuclei (lanthanides), ejecta masses & velocities from numerical simulations

To calculate light curves: heating rate from *r*-process radioactive decay, opacities from *r*-process nuclei (lanthanides), ejecta masses & velocities from numerical simulations

To calculate light curves: heating rate from *r*-process radioactive decay, opacities from *r*-process nuclei (lanthanides), ejecta masses & velocities from numerical simulations

Challenge: faint, rapid, (potentially red) transient in $\sim 100 \text{ deg}^2$

Our Follow-up Program: Radio to X-rays

Deep, red, wide-field imaging: Dark Energy Camera on the Blanco 4-m telescope at CTIO

Our Follow-up Program: Radio to X-rays

Deep, red, wide-field imaging: Dark Energy Camera on the Blanco 4-m telescope at CTIO

GW170817

Abbott et al. 2017

GW170817

 $|\chi_z| < 0.05$

 $|\chi_z| < 0.89$

2.25

2.50

2.75

GW170817

R.A. =
$$I3^{h}09^{m}$$

Dec. = $-25^{\circ}37'$
A $\approx 30 \text{ deg}^{2}$
 $d \approx 24-48 \text{ Mpc}$

2.50

2.75

Light Curves & Kilonova Models

<u>Three-component model:</u>

Villar, EB et al. 2017

Light Curves & Kilonova Models

<u>Three-component model:</u>

A range of ejecta properties with different nucleosynthesis, velocity, ejecta mass (geometry?)

Villar, EB et al. 2017

Spectroscopy

Nicholl, EB et al. 2017

Optical spectra featureless (high velocity) $M_{ej} \sim 0.03 \ M_{\odot} / v_{ej} \sim 0.3c$ $X_{lan} \lesssim 10^{-5} (1 \ day) / \sim 10^{-4} (2-4 \ days)$

Spectroscopy

Nicholl, EB et al. 2017

• Direct (spectroscopic) evidence for *r*-process nucleosynthesis

- Direct (spectroscopic) evidence for *r*-process nucleosynthesis
- $M_{ej} \times R_{BNS}$ accounts for Galactic *r*-process production rate

- Direct (spectroscopic) evidence for *r*-process nucleosynthesis
- $M_{ej} \times R_{BNS}$ accounts for Galactic *r*-process production rate
- $M_{ej,lan-rich} / M_{ej,lan-poor} \approx 0.15 \approx R_{MW,A>140} / R_{MW,A<140}$

- Direct (spectroscopic) evidence for *r*-process nucleosynthesis
- $M_{ej} \times R_{BNS}$ accounts for Galactic *r*-process production rate
- $M_{\rm ej,lan-rich} / M_{\rm ej,lan-poor} \approx 0.15 \approx R_{\rm MVV,A>140} / R_{\rm MVV,A<140}$
- Lanthanide-poor (blue) ejecta $v \approx 0.3c \Rightarrow$ collision interface $\Rightarrow NS-NS$

(breaks ambiguity from GW data)

- Direct (spectroscopic) evidence for *r*-process nucleosynthesis
- $M_{ej} \times R_{BNS}$ accounts for Galactic *r*-process production rate
- $M_{\rm ej,lan-rich}$ / $M_{\rm ej,lan-poor} \approx 0.15 \approx R_{\rm MW,A>140}$ / $R_{\rm MW,A<140}$
- Lanthanide-poor (blue) ejecta $v \approx 0.3c \Rightarrow$ collision interface $\Rightarrow NS-NS$

(breaks ambiguity from GW data)

 Lanthanide-poor (blue) ejecta large M_{ej} indicates small NS radius of ~11 km

Finsted, De, Brown & EB submitted

 $\delta(d_{L}): 30.3 \rightarrow 7.7 \text{ Mpc} \qquad \delta(M_{c}): 0.008 \rightarrow 0.002 \text{ M}_{\odot} \qquad \delta(i): 62.4 \rightarrow 19.3 \text{ deg}$ $d_{L} (\text{Mpc}) = 40.117_{-20,780}^{+9.531} \qquad \mathcal{M}^{src} = 1.1869_{-0.0025}^{+0.0055} \qquad \iota (\text{deg}) = 141.96_{-34.80}^{+27.57} \\ 1.1866_{-0.0022}^{+0.0010} \qquad 144.61_{-29.28}^{+25.27} \\ 1.1868_{-0.0010}^{+0.0010} \qquad 143.38_{-8.77}^{+10.46} \\ 143.38_{-8.77}^{+10.4$

• Lanthanide-rich (red) ejecta $v \approx 0.1c \Rightarrow$ accretion disk wind

- Lanthanide-rich (red) ejecta $v \approx 0.1c \Rightarrow$ accretion disk wind
- High lanthanide fraction indicates short HMNS phase (≤0.1 sec)
 ⇒ final state is BH

Finsted, De, Brown & EB submitted

$\delta(d_L)$: 30.3 \rightarrow 7.7 Mpc	$\delta(M_c)$: 0.008 \rightarrow 0.002 M _{\odot}	δ(i): 62.4 → 19.3 deg
$d_L \text{ (Mpc)} = 40.117^{+9.531}_{-20.780}$ $41.489^{+8.598}_{-18.358}$ $40.764^{+3.870}_{-3.883}$	$\mathcal{M}^{src} = 1.1869^{+0.0055}_{-0.0025}$ $1.1866^{+0.0048}_{-0.0022}$ $1.1868^{+0.0010}_{-0.0010}$	$\iota (deg) = 141.96^{+27.57}_{-34.80}$ $144.61^{+25.27}_{-29.28}$ $143.38^{+10.46}_{-8.77}$

- Lanthanide-rich (red) ejecta $v \approx 0.1c \Rightarrow$ accretion disk wind
- High lanthanide fraction indicates short HMNS phase (≤0.1 sec)
 ⇒ final state is BH
- First analysis directly combining GW and EM data

Finsted, De, Brown & EB submitted

$\delta(d_L)$: 30.3 \rightarrow 7.7 Mpc	$\delta(M_c): 0.008 \rightarrow 0.002 \ M_{\odot}$	$\delta(i): 62.4 \rightarrow 19.3 \deg$
d_L (Mpc) = 40.117 ^{+9.531} _{-20.780}	$\mathcal{M}^{src} = 1.1869^{+0.0055}_{-0.0025}$	ι (deg) = 141.96 ^{+27.57} _{-34.80}
$41.489^{+8.598}_{-18.358}$	1.1866 ^{+0.0048} _{-0.0022}	144.61 ^{+25.27} -29.28
$40.764_{-3.883}^{+3.870}$	$1.1868\substack{+0.0010\\-0.0010}$	143.38 ^{+10.46} -8.77

GRB170817

Abbott et al. 2017

GRB170817

First radio observation (VLA by our group) 2.5 hours after optical discovery. Remained undetected until ~2 weeks later.

First deep X-ray observation (*Chandra* by our group) 2.3 days after optical discovery. The source remained undetected until ~1.5 weeks later.

Early non-detections rule out a typical short GRB on-axis

Alexander, EB et al. 2017; Margutti, EB et al. 2017, 2018; also, Haggard et al., Troja et al. 2017, 2018

Alexander, EB et al. 2017; Margutti, EB et al. 2017, 2018

Radio / X-ray emission (and recent optical) are consistent with:

Structured GRB jet: relativistic core and angular structure with $E(\theta), \Gamma(\theta)$ viewed from an off-axis angle of ~20°

Mildly-relativistic cocoon: Isotropic with $E(\Gamma)$; but ad-hoc

Alexander, EB et al. 2017; Margutti, EB et al. 2017, 2018

• An on-axis jet typical of short GRBs is ruled out

- An on-axis jet typical of short GRBs is ruled out
- A central engine (magnetar) origin of the X-ray emission ruled out since the kilonova ejecta has $T_X \sim 10^2$

- An on-axis jet typical of short GRBs is ruled out
- A central engine (magnetar) origin of the X-ray emission ruled out since the kilonova ejecta has $T_X \sim 10^2$
- Radio/X-ray data consistent with a structured jet typical of short GRBs but observed ~20° off-axis (or a mildly-relativistic "cocoon" with an ad-hoc structure)

- An on-axis jet typical of short GRBs is ruled out
- A central engine (magnetar) origin of the X-ray emission ruled out since the kilonova ejecta has $T_X \sim 10^2$
- Radio/X-ray data consistent with a structured jet typical of short GRBs but observed ~20° off-axis (or a mildly-relativistic "cocoon" with an ad-hoc structure)
- Radio observations on a timescale of ~decade will reveal emission from the kilonova ejecta

Blanchard, EB et al. 2017

Blanchard, EB et al. 2017

Blanchard, EB et al. 2017

Blanchard, EB et al. 2017

An Unparalleled Story of Firsts

An Unparalleled Story of Firsts

- The first joint detection of gravitational waves and light (γ-rays to radio)
- First direct evidence that *r*-process nucleosynthesis happens in, and is likely dominated by, BNS mergers
- Radio/X-ray observations consistent with a structured jet viewed off-axis
- Optical/IR data suggest NS-NS \rightarrow BH
- More observations and interpretation underway