Molecules from clouds to stars and planets

Ewine F. van Dishoeck Leiden Observatory/ MPE

Thanks to many students, postdocs, colleagues

CSH lunchtalk Bern, 19 October 2017

From clouds to stars and planets

Fantastic facilities for astrochemistry

ALMA: the astrochemistry machine

Lots of astrochemistry still based on single-dish data

Fantastic new experiments and new groups!

Spectroscopy

UV plasma

He droplets

UHV surface science

Cavity Ringdown Spectroscopy

Crossed beam experiments

Outline

- Introduction
- Water from clouds to disks
 - Also O₂, HDO/H₂O
- Protoplanetary disks
 - Does chemical evolution matter?
 - JWST prospects

See reviews by Herbst & vD 2009, Caselli & Ceccarelli 2012, Tielens 2013 special issue of Chemical Reviews 2013, van Dishoeck 2014, 2017

Most molecules are found in dark clouds shielded from UV

HST Carina nebula

- Collision time: once per month at 10⁴ cm⁻³
- Chemistry dominated by two-body processes: kinetics, not TE
 Three-body processes at >10¹² cm⁻³

II. Water from clouds to disks

Herschel WISH team, Ringberg, January 2013

www.strw.leidenuniv.nl/WISH

~70 papers, van Dishoeck et al. 2011, PASP Bergin & van Dishoeck 2012, van Dishoeck et al. 2013, Chem. Rev. , 2014, Protostars & Planets VI

Detection of cold water reservoir

L1544 prestellar core H₂O 557 GHz HIFI

~1 million oceans of water ice

Caselli et al. 2012 Schmalz et al. 2014 Mottram et al. 2014

Signal consistent with simple ice chemistry

Bulk of water is formed on grains

Ice formation starts in clouds with $A_V > 1$ mag

Based on laboratory data Cuppen et al. 2010

Movie posted at www.strw.leidenuniv.nl/WISH

Where is water formed?

Alves et al. 2001 Caselli et al. 2012 Schmalzl et al. 2014

 $n=2.10^4 - 5.10^6$ cm⁻³, T=10 K Layer of water gas where ice is photodesorbed

Getting molecules off the grains at low T: photodesorption

 Typical efficiencies of 10⁻³ per incident photon

Direct vs kick-out mechanism

Öberg et al. 2007, 2009, Paardekoper+ 2016, Bertin+ 2016 van Hemert, Takahashi & vD 2014.

Andersson, Kroes, vD 2006 Arasa et al. 2010, 2011, 2015

Abundant O₂ in comets!

- O₂ not detected in molecular clouds, except ρ Oph A and Orion (Goldsmith et al. 2011, Liseau et al. 2012)

The puzzling O₂ story

Comets: High O₂ Low HO₂, H₂O₂, O₃

Molecular clouds: Low O₂ HO₂, H₂O₂ detected

Taquet et al. 2016

- Run large set of models for different parameters
- Only a very small set of models reproduces 67P values
- Requires warm cloud (20-30 K), high *n*, low CR ion rate ζ

Abundant O₂ in comets!

High abundance of O_2 suggests our solar system was formed in a dense warmish cloud (20-30 K vs 10 K)

Water formation routes

Water in low-mass protostars

Imaging water outflows

Water traces 'hot spots' where shocks dump energy into cloud But this water is lost to space, not included in forming solar systems

How much water is flowing?

Iguacu falls

One protostar = 10⁹ Cataratas! would fill up all of Earth's oceans in 5000 yr *High rate of water production!*

2330 m³/s

Follow water trail from cores to disk

Hot water on solar system scales

Jørgensen & vD 2010a Persson et al. 2012, 2013

Hot water detected, but not all oxygen in water <10⁻⁴

HDO/H₂O solar system scales

Young warm 'disks'

Persson et al. 2013, ALMA

Persson et al. 2012, 2014, NOEMA Jorgensen & van Dishoeck 2010a,b

HDO/H₂O~10⁻³

HDO/H₂O as tracer history solar system

Similarity cometary and protostellar envelopes consistent with HDO/ H_2O set in clouds and icy grains preserved upon disk and planetesimal formation

Doubly deuterated water in hot cores

$D_2O/HDO >> HDO/H_2O$

Furuya et al. 2016, Coutens et al. 2014, Dartois et al. 2003

- Most of H₂O formed in molecular clouds
- Most of HDO and D₂O formed in dense cores during heavy freeze out
- Consistent with ROSINA 67P results! (Altwegg et al. 2017)

Deuteration sequence

Furuya et al. 2016 Taquet et al. 2012, 2014

'Reset' vs 'Inheritance'

History of water in disk

Visser et al. 2009, 2011 Drozdovskaya et al. 2014

- Start at collapse phase, follow up to end of embedded phase
- Follow individual trajectories as they fall into disk
- Each trajectory has different *n*, *T*, UV (*t*)
- Disk evolves and spreads

(Ciesla & Sandford 2012)

III. Chemistry in disks

- Surface layer: molecules dissociated by UV photons
- Warm intermediate layer: molecules not much depleted, rich chemistry
- Cold midplane: molecules heavily frozen out

Q: How to trace midplane?

Aikawa & Herbst 1999 Aikawa et al. 2002 Van Zadelhoff et al. 2003 Fogel et al. 2010 Willacy & Langer 2000 Markwick et al. 2002 Henning & Semenov 2013 Woitke et al. 2009 Bruderer et al. 2012 + many groups

The chemistry of water in seisks 1985 928 H2 Oice 41

120 898 H20 100 77

0.1 AU

Evaporation in inner disk (<3 AU)

Freeze out in outer H2Ogas fraction ×H2Qie H2Ogas H2Oice 77 disk (> 3 AU)

H20 838 H20 ice

Equilibrium between photodesorption and dissociation in outer disk (Dominik et al. 2005): H₂O_{gas} ~fraction×H₂O_{ice}

H2Ogas fraction×H2Oice

200005

H2000 Haction H20100 **Snowline**

Detection cold water reservoir in disks

Weak water lines in disks

- Can only be fit by models with volatile oxygen reduced by factor of 10-100

Absence of cold gaseous water

Water sequestered in large bodies early

- Settling of mm-sized grains, planetesimal formation
- Water follows mm grains
 - Moved inward due to radial drift

Bergin et al. 2010, Du et al. 2015, Kama et al. 2016

Does chemistry matter? Only if ionization high enough

SLR=short-lived radionuclides

Eistrup et al. 2016, 2017

- Use Alibert+ disk models
- Inheritance (molecular) vs Reset (atomic) abundances
- High versus low ionization

Does midplane chemistry matter?

Eistrup, Walsh, vD 2016, 2017

- Chemistry affects C/O in gas if high ionisation
- Importance depends whether planets accrete heavy elements from gas or ice

C/O ratio in evolving disk

Eistrup et al. 2017

- C/O and C/H in gas high only at early times beyond water ice line

Inner disk (<1 AU): hot chemistry

Note low line / continuum ratio at R~600

Carr & Najita 2008, Salyk et al. 2008, 2010, Lahuis et al. 2006, Pontoppidan et al. 2014

- High temperature (300-1000 K) chemistry (e.g., Walsh et al. 2015)

and can observe bulk of molecules

D. Fedele

C, N and O budget

Pontoppidan et al. 2014

- Where are carbon and nitrogen?

JWST-MIRI will greatly improve sensitivity + spectral resolution

Model disk spectra JWST

Chemical inventory inner disk: consistent with solar abundances? Similar to more evolved disks? Evidence for planetesimal formation and drift?
CH₄ and NH₃ can now be observed!

Ices in edge-on disks

Measure CO₂, CH₄ ice in disks for the first time; O₂ search

Pontoppidan et al. 2005

CO₂ spectrum

- Effect of different abundances difficult to see in spectra

Sublimating planetesimals at icelines

Bosman et al. 2017, 2018

JWST can see this enhancement through ¹³CO₂

Can we link planetary atmosphere composition with its formation location / history?

Key question: are most heavy elements accreted from gas or ice?

Sato et al. 2016, Modasini et al. 2016

Consider also:

- Radial drift pebbles, dust traps, diffusive mixing
- Migration planets
- **Reset chemistry in inner disk (inside snow lines)**
- Reset chemistry in planetary atmospheres→ preserve C/O, C/N?

The next step

Linking Exoplanet and Disk Compositions

Space Telescope Science Institute September 12-14, 2016

> Daniel Apai (Arizona) Andrea Banzatti (STScI, chair) Fred Ciesla (Chicago) Jonathan Fortney (UCSC) Sarah Hörst (JHU) SOC: Inga Kamp (Groningen) Nikole Lewis (STScI, co-chair) Amaya Moro-Martin (STScI) Karin Öberg (CfA) Klaus Pontoppidan (STScI) Olivia Venot (Leuven) Marie Ygouf (STScI)