Zooming into planet-forming zones of disks with ALMA

Ewine F. van Dishoeck, Leiden Observatory / MPE

CSH colloquium Bern, October 18 2017

23 years ago: Iconic HST images of disks

0.05" pixels

HST/NASA/ESA O'Dell et al. 1994

Iconic ALMA image of young disk 20 years later...

Orbit of Neptune

ALMA 20 milli-as (few AU resolution) HL Tau

ALMA partnership, Brogan et al. 2015

New era of observational planet formation

Not yet clear what is causing these rings, gaps, dust traps...

From disks to planets

From icy grains to planetesimals to embryos to planets

Grain, rocks < meters

Planetesimals kilometers

kilometers This may happen fast, even in the embedded stage; assisted by dust traps

Water ice accelerates coagulation

Planetary embryos Lunar (1 AU)-to-Mars (2 AU) sized

J. Lunine

How were 'we' formed 4.5 billion years ago?

Messengers from the early solar system

Atacama Large Millimeter Array (ALMA)

54x12 m + 12x7 m antennas 84-900 GHz; 0.3-3 mm

Lines: rotational transitions of molecules; continuum: cold dust

Atacama Large Millimeter Array

Outline

- Introduction
- Disks around pre-main sequence stars
 - Surveys, dust statistics
 - Gas/dust ratios, carbon and oxygen depletion
 - Snowlines, rings
- Transitional disks
- Conclusions

Thanks to many students, postdocs, collaborators

Nienke van der Marel

Megan Ansdell

Anna Miotello

What I will not talk about: Disks in the embedded phase

VLA1623A

L1448 triple

Elias 2-29

Disk evolution and planet formation

ALMA can characterize and quantify each of these steps

Williams & Cieza 2011

What sets exoplanet characteristics?

- Lots of SuperEarths
- Few giant planets

- Increase with stellar mass

Planet population synthesis

and can observe bulk of molecules

D. Fedele

Pre-ALMA: handful of disks

Large gas Small dust disk

Andrews 2015

ALMA

Walsh et al. 2015, Facchini et al. 2017

Small dust disk naturally arises from low optical depth of continuum emission; Also evidence for grain growth and radial drift

From detailed studies of a few disks to large samples

PI: Jonathan P. Williams (IfA)

Juan M. Alcalá (INAF), <u>Megan Ansdell (I</u>fA, UC Berkeley), Stefano Facchini (MPE) Greta Guidi (INAF), Michiel Hogerheijde (Leiden Obs.), Carlo F. Manara (ESA, ESO), Geoff S. Mathews (IfA), <u>Anna Miotello (Lei</u>den Obs., ESO), Antonella Natta (INAF,DIAS), Marco Tazzari (IoA), Leonardo Testi (ESO,INAF), Leon Trapman (Leiden Obs.), <u>Nienke van der M</u>arel (IfA,UVic) Ewine F. van Dishoeck (Leiden Obs., MPE), Sierk van Terwisga (Leiden Obs.).

Publications

Ansdell et al. (2016) Manara et al. (2016) Miotello et al. (2017) Tazzari et al. (2017)

Unbiased survey Lupus disks

J.P. Williams, PI

65 / 98 sources detected in continuum, only 30 in ¹³CO

• $F_{\nu} \sim M_d T_d \kappa_{\nu}$

Cumulative dust mass distribution

Ansdell et al. 2016, 2017 Barenfeld et al. 2016 Pascucci et al. 2016

Most disks do not have enough dust mass for core accretion model to form a giant planet

Assumes $\kappa_v^{\text{dust}} = 100 \text{ cm}^2 \text{ gr}^1$ at 1000 GHz, $\beta = 1$

Declining dust distribution

Disks that can form giant planet cores (10 M_{Earth})

- **1-3 Myr: 25%**
- **3-5 Myr: 13%**
- **5-10 Myr: 5%**
- Giant planet formation well underway early?

Giant planet formation rare?

- Most disks lack sufficient dust
- Consistent with exoplanet statistics

Dust mass increases with M*

Ansdell et al. 2017

- Consistent with giant planets more frequent around higher-mass stars

Link planet formation theories with disk evolution

Lupus 1.3mm

Dust

^{يست} د.	Sz 98		Sz 129	Sz 71	MY Lup	•
52 111	J1600-4222	Sz 114	11508-3828	J1607-3914	S4 65	Sz 133
57 118	V856 500	52 100	J1601 4152	J1545-3417	SZ 123A	57 84
11612-3815	Sz 108B	Sz.74	Sz 73	5z 113	J1608-3914	Sz 69
52 90	S∠ 110	S2 66	J1609-3925	J1545-3417	S∠ 72	Sz 103
52 117	52 81A	52 88A	••••••••••••••••••••••••••••••••••••••	5z 131	J1610-J922	J1608-3857
52 97	Sz 130	J1609-3835	Sz 95	Sz 112	Sz 96	J1503-3902

Lupus CO 2-1

Gas

Ansdell et al. 2016

CO lines are weak, much weaker than expected

σ Orionis disk survey

Older region

Ansdell et al. 2017

Only 37 / 92 disks detected in continuum Only 6/92 detected in lines

Weak CO emission is common

12CO (1st) ¹²CO (0th) 13CO (0th) 1.3 mm 12.8 27 12.5 3 12.2 14.4 1153 13.2 12.0 10.0 540 8.5 7.0 12.8 1152 11.8 10.8 8.6 818 \bigcirc \cap 7.8 km/ 7.0 12.8 1075 \bigcirc \bigcirc 12.3 11.8

> **O9 star** 3-5 Myr d=388 pc

Pascucci et al. 2016 (Cha), Barenfeld et al. 2016 (upper Sco), Eisner et al. 2016 (ONC1), Cazzoletti et al. (R Cra)

Determining gas masses

- Most disks not enough gas to form Jupiter

- Most disks gas/dust <<100 assuming [C]/[H]=10⁻⁴

Ansdell et al. 2016 Miotello et al. 2017

Weak CO emission: Low gas/dust ratios or low volatile carbon?

- Gas removed quickly from disk (<few Myr)? → *SuperEarths*
- CO transformed to other species?
 (CO₂, CH₃OH, hydrocarbons)
- CO and other volatiles locked up quickly in large bodies in midplane?

Miotello et al. 2017 Lupus Long et al. 2017 Cha

Where is the volatile oxygen and carbon?

Hogerheijde et al. 2011, Du et al. 2015, 2017

Gas mass from HD factor 100 higher than from CO *Points to carbon and oxygen depletion, not low gas/dust*

Bergin et al. 2014, Kama et al. 2016, Miotello et al. 2017

Disk mass from *Herschel*-PACS: HD J=1-0 112 μm

Bergin et al. 2013, McClure et al. 2016

SOFIA SPICA

Favre et al. 2013, Schwarz et al. 2016, Trapman et al. 2017

Chemistry as tracer of gas and dust evolution

UV penetrates deep into disk

Small bare grains

Icy pebbles O-rich

Is most of the chemistry of planet formation hidden from our view? Gas with C/O >1 (but overall C depleted)

Bergin et al. 2016 Birnstiel et al. Kama et al. 2016 Cleeves et al. 2016 Facchini et al. 2017

Disk structure and snowlines

Snowlines

Öberg, Bergin et al. 2011

- Snowline enhances mass of solids → *planet formation*
- Freeze-out changes C/O ratio gas and ice → *planet atmosphere*

Imaging the CO snowline

 $N_2H^+ + CO \rightarrow$

 $N_2 + HCO^+$

TW Hya Face-on disk d=68 pc

N₂H⁺ 4-3

Qi, Öberg et al. 2013

 N_2H^+ appears when CO freezes out \rightarrow Tracer of snowline

Another example resolved CO snow line

HD 163296 Herbig star ALMA

G. Mathews et al. 2013 Qi et al. 2011 SMA

- CO freezes out at ~20 K 🛑 145±15 AU

'Disk tomography'

DCO⁺ as tracer CO snowline

Öberg et al. 2015 Huang et al. 2017

Snowlines move

Water snowline vs dM/dt

Harsono et al. 2015

Imaging water snowline (indirect)

Cieza et al. 2016

Transitional disks

'Planet formation in action'

Disk evolution

There are multiple paths from protoplanetary to debris disks

Transitional disk- dust continuum

Brown et al. 2009

L. Perez et al. 2014

Gallery of potential planet-forming disks

Dust traps in transitional disks

ALMA Archive: Van der Marel 2016, vD et al. 2015

Dust trapping

- Companion generates a radial pressure bump in gas
- Large dust will be trapped and no longer migrates inward
- Dust hole much larger than gas hole ⇒ massive companion

Whipple 1972 Pinilla et al. 2012 + many others

Radial and azimuthal dust traps

- For massive planets (>5 M_{Jup}), radial dust trap located at ~twice R_{planet}
- If overdensity at edge high + viscosity α low → Rossby unstable→long-lived vortex (10⁵ yr)
 - Azimuthal asymmetry
- Gas edge < dust edge (~5 vs 10 R_{Hill})

Azimuthal asymmetry

Pinilla, Birnstiel et al. 2013 Couple FARGO output with dust evolution code

Barge & Sommeria 1995 Klahr & Henning 1997 Wolf & Klahr 2002 Meheut et al. 2013, Birnstiel et al. 2013 Facchini et al. 2017

Dust ring and cavity clearing mechanisms

 \rightarrow Need to know the gas and dust distribution inside cavity

Gas cavity smaller than dust cavity

HD135344B / SAO206462

van der Marel et al. 2015, 2016

- Gas present inside dust hole
- Gas cavity smaller than that of dust

Gas and mm dust do not follow each other Gas cavity < dust cavity

van der Marel et al. 2016 Press release December 16, 2015

Deep gas drops (factor 100-1000) point to young embedded planets

Quantitative CO analysis→ Gas mass + surface density

Miotello et al. 2012, 2013, 2

Gas mass and surface density

Factor 100 (TBD)

Bruderer 2013 Van der Marel et al. 2015 Facchini et al. 2017

- CO survives in dust-free cavity
- ALMA can probe gas masses down to 1 M_{Earth} in 1 hr!

Gas vs dust density structures

- Gas cavity < dust cavity <u>in all cases</u> studied to date -Gas density drops by factor [∞]_□[∞] 100-1000 → embedded planets

van der Marel et al. 2015, 2016; Bruderer et al. 2014

Cavity clearing mechanisms mm-dust gas • Grain growth 100 AU 1 AU 10 AU 🖊 🗍 🛉 wind x-rays Photoevaporation 10 ALL 100 AL 1 ALL interaction with planet \bigstar trapping Companion cavity 10 AU 100 AU 1 AU trapping Dead zones \mathbf{x} 10 AU 100 AU 1 AU

Two regimes of TDs?

Owen & Clarke 2012 Facchini et al. 2017

- Test photoevaporation scenario with a few disks

Can we constrain planet mass?

Hydro-simulations

Pinilla et al. 2012 + many other groups

- Depth of gap depends on mass of planet *and* viscosity α *Need to spatially resolve gaps!* $\rightarrow <0.1$ "

Recent work SR24 binary: large variations

Pinilla et al. 2017

No disk seen in mm around SR 24N, factor >300 weaker than S

Double dust rings HD 100546

Main dust disk subtracted 1% of peak flux

Inner dust ring No circumplanetary disk

> ALMA long baselines Pineda, Szulágyi+ in prep.

Walsh et al. 2014, 2017 C. Wright et al. 2015

Evidence of multiple (sequential?) planet formation?

Pinilla et al. 2015

- Radial drift alone nor a single planet at 10 AU can reproduce the emission from millimeter-sized dust grains + scattered light

- Outer planet must be significantly younger than the inner planet (by > 2.5 Myr)

Double ring in planet-forming disk HD169142

Dust mm continuum

Scattered light

Fedele et al. 2017

- **`- Deep gas drops in rings point to planets**
- But presence protoplanet now being disputed?

Back to Lupus: TDs

van der Marel et al. 2017 in prep.

- 10% of disks in Lupus are TDs with >20 AU cavity
- TDs among most massive and largest disks

Problems:

- Fraction too high compared with exoplanet statistics
- No circumplanetary disks detected yet with ALMA
- Embedded planets not found by direct imaging

Summary

- Structure of protoplanetary disks being unravelled by ALMA
 - Gas and mm dust do not follow each other
 - Depletion of dust with age 1-10 Myr
 - Weak CO emission: low gas/dust vs carbon depletion
 - Few disks have enough dust or gas to build giant planet
 - Snowlines directly imaged
- Transitional disks as sites of giant planet formation?
 - Dust traps and gas cavities point to young giant planets
 - Tension with exoplanet statistics?

Next steps: $\Sigma_{gas}(R)$ large samples chemistry multi λ

Disk transport and evolution

Disk winds more important than MRI?

Bai & Stone Gressel et al. Armitage

Accretion rate vs disk mass testing viscous evolution

Manara et al. 2016

100xM_{dust} agrees well with viscous evolution for ~3 Myr lifetime (with considerable scatter)

Lupus dust surface density profiles

Tazzari et al. 2017

Disks structures: what do they imply for planets?

HD 135344B ALMA: van der Marel et al. 2016b

VLT-Sphere: Stolker et al. 2016 Scattered light image

- Mm emission is ring + asymmetric trap
- Structures point to giant planet(s), but in different ways
 - Muto, Garufi, Stolker: 2 planets: inner and outer
 - Dong: 1 planet at ~100 AU
 - vdM: 1 planet at ~30 AU

HD135344 spiral scenario

